Patents by Inventor Kelin J. Kuhn

Kelin J. Kuhn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140176182
    Abstract: Described herein are technologies related to self-disabling feature of a integrated circuit device to avoid unauthorized access to stored data information
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Inventors: Kelin J Kuhn, Christopher J Jezewski, Marko Radosavljevic
  • Publication number: 20140173716
    Abstract: Managing and accessing personal data is described. In one example, an apparatus has an application processor, a memory to store data, a receive and a transmit array coupled to the application processor to receive data to store in the memory and to transmit data stored in the memory through a wireless interface, and an inertial sensor to receive user commands to authorize the processor to receive and transmit data through the receive and transmit array.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 19, 2014
    Inventors: Sasikanth Manipatruni, Kelin J. Kuhn, Debendra Mallik, John C. Johnson
  • Patent number: 8753942
    Abstract: Methods of forming microelectronic structures are described. Embodiments of those methods include forming a nanowire device comprising a substrate comprising source/drain structures adjacent to spacers, and nanowire channel structures disposed between the spacers, wherein the nanowire channel structures are vertically stacked above each other.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: June 17, 2014
    Assignee: Intel Corporation
    Inventors: Kelin J. Kuhn, Seiyon Kim, Rafael Rios, Stephen M. Cea, Martin D. Giles, Annalisa Cappellani, Titash Rakshit, Peter Chang, Willy Rachmady
  • Publication number: 20140153720
    Abstract: Described herein are techniques related to implementation of a quantum key distribution (QKD) scheme by a photonic integrated circuit (PIC). For example, the PIC is a component in a wireless device that is used for quantum communications in a quantum communications system.
    Type: Application
    Filed: December 5, 2012
    Publication date: June 5, 2014
    Inventors: Christopher J. Jezewski, Kelin J. Kuhn, Marko Radosavljevic
  • Publication number: 20140138744
    Abstract: Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 22, 2014
    Inventors: Roza Kotlyar, Stephen M. Cea, Gilbert Dewey, Benjamin Chu-Kung, Uygar E. Avci, Rafael Rios, Anurag Chaudhry, Thomas D. Linton, JR., Ian A. Young, Kelin J. Kuhn
  • Publication number: 20140070273
    Abstract: A method and a device made according to the method. The method comprises providing a substrate including a first material, and providing a fin including a second material, the fin being disposed on the substrate and having a device active portion, the first material and the second material presenting a lattice mismatch between respective crystalline structures thereof. Providing the fin includes providing a biaxially strained film including the second material on the substrate; and removing parts of the biaxially strained film to form a substantially uniaxially strained fin therefrom.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 13, 2014
    Inventors: Stephen M. Cea, Roza Kotlyar, Jack T. Kavalieros, Martin D. Giles, Tahir Ghani, Kelin J. Kuhn, Markus Kuhn, Nancy M. Zelick
  • Publication number: 20140042386
    Abstract: Nanowire structures having non-discrete source and drain regions are described. For example, a semiconductor device includes a plurality of vertically stacked nanowires disposed above a substrate. Each of the nanowires includes a discrete channel region disposed in the nanowire. A gate electrode stack surrounds the plurality of vertically stacked nanowires. A pair of non-discrete source and drain regions is disposed on either side of, and adjoining, the discrete channel regions of the plurality of vertically stacked nanowires.
    Type: Application
    Filed: December 23, 2011
    Publication date: February 13, 2014
    Inventors: Stephen M. Cea, Annalisa Cappellani, Martin D. Giles, Rafael Rios, Seiyon Kim, Kelin J. Kuhn
  • Publication number: 20140001560
    Abstract: Isolated and bulk semiconductor devices formed on a same bulk substrate and methods to form such devices are described. For example, a semiconductor structure includes a first semiconductor device having a first semiconductor body disposed on a bulk substrate. The first semiconductor body has an uppermost surface with a first horizontal plane. The semiconductor structure also includes a second semiconductor device having a second semiconductor body disposed on an isolation pedestal. The isolation pedestal is disposed on the bulk substrate. The second semiconductor body has an uppermost surface with a second horizontal plane. The first and second horizontal planes are co-planar.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: Annalisa Cappellani, Kelin J. Kuhn, Rafael Rios, Harry Gomez
  • Publication number: 20140001441
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: Seiyon Kim, Kelin J. Kuhn, Tahir Ghani, Anand S. Murthy, Mark Armstrong, Rafael Rios, Abhijit Jayant Pethe, Willy Rachmady
  • Publication number: 20130334572
    Abstract: A junctionless accumulation-mode (JAM) semiconductive device is isolated from a semiconducive substrate by a reverse-bias band below a prominent feature of a JAM semiconductive body. Processes of making the JAM device include implantation and epitaxy.
    Type: Application
    Filed: August 12, 2013
    Publication date: December 19, 2013
    Inventors: Annalisa Cappellani, Kelin J. Kuhn, Rafael Rios, Titash Rakshit, Sivakumar Mudanai
  • Publication number: 20130320294
    Abstract: Common-substrate semiconductor devices having nanowires or semiconductor bodies with differing material orientation or composition and methods to form such common-substrate devices are described. For example, a semiconductor structure includes a first semiconductor device having a first nanowire or semiconductor body disposed above a crystalline substrate. The first nanowire or semiconductor body is composed of a semiconductor material having a first global crystal orientation. The semiconductor structure also includes a second semiconductor device having a second nanowire or semiconductor body disposed above the crystalline substrate. The second nanowire or semiconductor body is composed of a semiconductor material having a second global crystal orientation different from the first global orientation. The second nanowire or semiconductor body is isolated from the crystalline substrate by an isolation pedestal disposed between the second nanowire or semiconductor body and the crystalline substrate.
    Type: Application
    Filed: December 23, 2011
    Publication date: December 5, 2013
    Inventors: Annalisa Cappellani, Peter G. Tolchinsky, Kelin J. Kuhn, Glenn A. Glass, Van H. Le
  • Publication number: 20130320448
    Abstract: Semiconductor devices having three-dimensional bodies with modulated heights and methods to form such devices are described. For example, a semiconductor structure includes a first semiconductor device having a first semiconductor body disposed above a substrate. The first semiconductor body has a first height and an uppermost surface with a first horizontal plane. The semiconductor structure also includes a second semiconductor device having a second semiconductor body disposed above the substrate. The second semiconductor body has a second height and an uppermost surface with a second horizontal plane. The first and second horizontal planes are co-planar and the first and second heights are different.
    Type: Application
    Filed: December 21, 2011
    Publication date: December 5, 2013
    Inventors: Annalisa Cappellani, Kelin J. Kuhn, Rafael Rios, Aura Cecilia Davila Latorre, Tahir Ghani
  • Publication number: 20130320455
    Abstract: Semiconductor devices with isolated body portions are described. For example, a semiconductor structure includes a semiconductor body disposed above a semiconductor substrate. The semiconductor body includes a channel region and a pair of source and drain regions on either side of the channel region. An isolation pedestal is disposed between the semiconductor body and the semiconductor substrate. A gate electrode stack at least partially surrounds a portion of the channel region of the semiconductor body.
    Type: Application
    Filed: December 20, 2011
    Publication date: December 5, 2013
    Inventors: Annalisa Cappellani, Stephen M. Cea, Tahir Ghani, Harry Gomez, Jack T. Kavalieros, Patrick H. Keys, Seiyon Kim, Kelin J. Kuhn, Aaron D. Lilak, Rafael Rios, Mayank Sahni
  • Publication number: 20130313513
    Abstract: Semiconductor devices having modulated nanowire counts and methods to form such devices are described. For example, a semiconductor structure includes a first semiconductor device having a plurality of nanowires disposed above a substrate and stacked in a first vertical plane with a first uppermost nanowire. A second semiconductor device has one or more nanowires disposed above the substrate and stacked in a second vertical plane with a second uppermost nanowire. The second semiconductor device includes one or more fewer nanowires than the first semiconductor device. The first and second uppermost nanowires are disposed in a same plane orthogonal to the first and second vertical planes.
    Type: Application
    Filed: December 23, 2011
    Publication date: November 28, 2013
    Inventors: Annalisa Cappellani, Kelin J. Kuhn, Rafael Rios, Gopinath Bhimarasetti, Tahir Ghani, Seiyon Kim
  • Patent number: 8558279
    Abstract: A method and a device made according to the method. The method comprises providing a substrate including a first material, and providing a fin including a second material, the fin being disposed on the substrate and having a device active portion, the first material and the second material presenting a lattice mismatch between respective crystalline structures thereof. Providing the fin includes providing a biaxially strained film including the second material on the substrate; and removing parts of the biaxially strained film to form a substantially uniaxially strained fin therefrom.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: October 15, 2013
    Assignee: Intel Corporation
    Inventors: Stephen M. Cea, Roza Kotlyar, Jack T. Kavalieros, Martin D. Giles, Tahir Ghani, Kelin J. Kuhn, Markus Kuhn, Nancy M. Zelick
  • Patent number: 8507948
    Abstract: A junctionless accumulation-mode (JAM) semiconductive device is isolated from a semiconductive substrate by a reverse-bias band below a prominent feature of a JAM semiconductive body. Processes of making the JAM device include implantation and epitaxy.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: August 13, 2013
    Assignee: Intel Corporation
    Inventors: Annalisa Cappellani, Kelin J. Kuhn, Rafael Rios, Titash Rakshit, Sivakumar P. Mudanai
  • Publication number: 20130161756
    Abstract: Techniques are disclosed for customization of nanowire transistor devices to provide a diverse range of channel configurations and/or material systems within the same integrated circuit die. In accordance with one example embodiment, sacrificial fins are removed and replaced with custom material stacks of arbitrary composition and strain suitable for a given application. In one such case, each of a first set of the sacrificial fins is recessed or otherwise removed and replaced with a p-type layer stack, and each of a second set of the sacrificial fins is recessed or otherwise removed and replaced with an n-type layer stack. The p-type layer stack can be completely independent of the process for the n-type layer stack, and vice-versa. Numerous other circuit configurations and device variations are enabled using the techniques provided herein.
    Type: Application
    Filed: July 27, 2012
    Publication date: June 27, 2013
    Inventors: Glenn A. Glass, Kelin J. Kuhn, Seiyon Kim, Anand S. Murthy, Daniel B. Aubertine
  • Publication number: 20120299069
    Abstract: Methods of fabricating a first contact to a semiconductor device, which fundamentally comprises providing a semiconductor device formed on a substrate. The substrate further includes a conductive surface. A dielectric layer is formed over the substrate and has an opening exposing the conductive surface. The opening extends an entire length of the semiconductor device, partway down the entire length of the device, extending from the device onto adjacent field of the device, or and a combination thereof. A barrier layer is formed within the opening. A copper containing material fills the opening to form a first contact to the semiconductor device.
    Type: Application
    Filed: August 7, 2012
    Publication date: November 29, 2012
    Applicant: Intel Corporation
    Inventors: Kelin J. Kuhn, Kaizad Mistry, Mark Bohr, Chris Auth
  • Patent number: 8258057
    Abstract: Methods of fabricating a first contact to a semiconductor device, which fundamentally comprises providing a semiconductor device formed on a substrate. The substrate further includes a conductive surface. A dielectric layer is formed over the substrate and has an opening exposing the conductive surface. The opening extends an entire length of the semiconductor device, partway down the entire length of the device, extending from the device onto adjacent field of the device, or and a combination thereof. A barrier layer is formed within the opening. A copper containing material fills the opening to form a first contact to the semiconductor device.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: September 4, 2012
    Assignee: Intel Corporation
    Inventors: Kelin J. Kuhn, Kaizad Mistry, Mark Bohr, Chris Auth
  • Publication number: 20120161202
    Abstract: A junctionless accumulation-mode (JAM) semiconductive device is isolated from a semiconducive substrate by a reverse-bias band below a prominent feature of a JAM semiconductive body. Processes of making the JAM device include implantation and epitaxy.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 28, 2012
    Inventors: Annalisa Cappellani, Kelin J. Kuhn, Rafael Rios, Titash Rakshit, Sivakumar P. Mudanai