Patents by Inventor Kenichi Okazaki

Kenichi Okazaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10504420
    Abstract: The number of lithography processes is reduced and a high-definition display device is provided. The display device includes a pixel portion and a driver circuit for driving the pixel portion. The pixel portion includes a first transistor and a pixel electrode electrically connected to the first transistor. The driver circuit includes a second transistor and a connection portion. The second transistor includes a metal oxide film, first and second gate electrodes that face each other with the metal oxide film positioned therebetween, source and drain electrodes over and in contact with the metal oxide film, and a first wiring connecting the first and second gate electrodes. The connection portion includes a second wiring on the same surface as the first gate electrode, a third wiring on the same surface as the source electrode and the drain electrode, and a fourth wiring connecting the second wiring and the third wiring.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: December 10, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masahiro Katayama, Daisuke Kurosaki, Kenichi Okazaki, Junichi Koezuka
  • Patent number: 10504924
    Abstract: In a transistor including an oxide semiconductor film, field-effect mobility and reliability are improved. A semiconductor device includes a gate electrode, an insulating film over the gate electrode, an oxide semiconductor film over the insulating film, and a pair of electrodes over the oxide semiconductor film. The oxide semiconductor film includes a first oxide semiconductor film and a second oxide semiconductor film over the first oxide semiconductor film. The first oxide semiconductor film is formed using In oxide or In—Zn oxide. The second oxide semiconductor film is formed using In-M-Zn oxide (M is Al, Ga, or Y) and includes a region where the number of In atoms is 40% or more and 50% or less and the number of M atoms is 5% or more and 30% or less of the total number of In, M, and Zn atoms.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: December 10, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasutaka Nakazawa, Yasuharu Hosaka, Kenichi Okazaki
  • Patent number: 10490572
    Abstract: A change in electrical characteristics can be inhibited and reliability can be improved in a semiconductor device including an oxide semiconductor. The semiconductor device including an oxide semiconductor film includes a first insulating film, the oxide semiconductor film over the first insulating film, a second insulating film over the oxide semiconductor film, and a third insulating film over the second insulating film. The second insulating film includes oxygen and silicon, the third insulating film includes nitrogen and silicon, and indium is included in a vicinity of an interface between the second insulating film and the third insulating film.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: November 26, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kenichi Okazaki, Junichi Koezuka, Masami Jintyou, Takahiro Iguchi
  • Patent number: 10483295
    Abstract: An oxide semiconductor film with a low density of defect states is formed. In addition, an oxide semiconductor film with a low impurity concentration is formed. Electrical characteristics of a semiconductor device or the like using an oxide semiconductor film is improved. A semiconductor device including a capacitor, a resistor, or a transistor having a metal oxide film that includes a region; with a transmission electron diffraction measurement apparatus, a diffraction pattern with luminescent spots indicating alignment is observed in 70% or more and less than 100% of the region when an observation area is changed one-dimensionally within a range of 300 nm.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: November 19, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichi Koezuka, Kenichi Okazaki, Yasuharu Hosaka
  • Publication number: 20190348538
    Abstract: To suppress a change in electrical characteristics in a transistor including an oxide semiconductor film. The transistor includes a first gate electrode, a first insulating film, an oxide semiconductor film, a source electrode, a drain electrode, a second insulating film, a second gate electrode, and a third insulating film. The oxide semiconductor film includes a first oxide semiconductor film on the first gate electrode side, and a second oxide semiconductor film over the first oxide semiconductor film. The first oxide semiconductor film and the second oxide semiconductor film include In, M, and Zn (M is Al, Ga, Y, or Sn). In a region of the second oxide semiconductor film, the number of atoms of In is smaller than that in the first oxide semiconductor film. The second gate electrode includes at least one metal element included in the oxide semiconductor film.
    Type: Application
    Filed: July 24, 2019
    Publication date: November 14, 2019
    Inventors: Junichi KOEZUKA, Kenichi OKAZAKI, Yasuharu HOSAKA, Masami JINTYOU, Takahiro IGUCHI, Shunpei YAMAZAKI
  • Patent number: 10475819
    Abstract: A semiconductor device which includes an oxide semiconductor and in which formation of a parasitic channel due to a gate BT stress is suppressed is provided. Further, a semiconductor device including a transistor having excellent electrical characteristics is provided. The semiconductor device includes a transistor having a dual-gate structure in which an oxide semiconductor film is provided between a first gate electrode and a second gate electrode; gate insulating films are provided between the oxide semiconductor film and the first gate electrode and between the oxide semiconductor film and the second gate electrode; and in the channel width direction of the transistor, the first or second gate electrode faces a side surface of the oxide semiconductor film with the gate insulating film between the oxide semiconductor film and the first or second gate electrode.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: November 12, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hiroyuki Miyake, Kenichi Okazaki, Masahiko Hayakawa, Shinpei Matsuda
  • Publication number: 20190326538
    Abstract: An object of the invention is to improve the reliability of a light-emitting device. Another object of the invention is to provide flexibility to a light-emitting device having a thin film transistor using an oxide semiconductor film. A light-emitting device has, over one flexible substrate, a driving circuit portion including a thin film transistor for a driving circuit and a pixel portion including a thin film transistor for a pixel. The thin film transistor for a driving circuit and the thin film transistor for a pixel are inverted staggered thin film transistors including an oxide semiconductor layer which is in contact with a part of an oxide insulating layer.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Shingo EGUCHI, Yoshiaki OIKAWA, Kenichi OKAZAKI, Hotaka MARUYAMA
  • Patent number: 10453927
    Abstract: In a transistor including an oxide semiconductor film, movement of hydrogen and nitrogen to the oxide semiconductor film is suppressed. Further, in a semiconductor device using a transistor including an oxide semiconductor film, a change in electrical characteristics is suppressed and reliability is improved. A transistor including an oxide semiconductor film and a nitride insulating film provided over the transistor are included, and an amount of hydrogen molecules released from the nitride insulating film by thermal desorption spectroscopy is less than 5×1021 molecules/cm3, preferably less than or equal to 3×1021 molecules/cm3, more preferably less than or equal to 1×1021 molecules/cm3, and an amount of ammonia molecules released from the nitride insulating film by thermal desorption spectroscopy is less than 1×1022 molecules/cm3, preferably less than or equal to 5×1021 molecules/cm3, more preferably less than or equal to 1×1021 molecules/cm3.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: October 22, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshinari Sasaki, Takashi Hamochi, Toshiyuki Miyamoto, Masafumi Nomura, Junichi Koezuka, Kenichi Okazaki
  • Publication number: 20190317374
    Abstract: A liquid crystal display device with a high aperture ratio is provided. A liquid crystal display device with low power consumption is provided. The display device includes a display portion and a driver circuit portion. The display portion includes a liquid crystal element, a first transistor, a scan line, and a signal line. The driver circuit portion includes a second transistor. The liquid crystal element includes a pixel electrode, a liquid crystal layer, and a common electrode. Each of the scan line and the signal line is electrically connected to the first transistor. The scan line and the signal line each include a metal layer. The structure of the first transistor is different from that of the second transistor. The first transistor is electrically connected to the pixel electrode. The first transistor includes a first region connected to the pixel electrode. The pixel electrode, the common electrode, and the first region have a function of transmitting visible light.
    Type: Application
    Filed: November 16, 2017
    Publication date: October 17, 2019
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Yukinori SHIMA, Kenichi OKAZAKI, Natsuko TAKASE
  • Patent number: 10437091
    Abstract: To suppress a variation in characteristics of a transistor due to a released gas from an organic insulating film so that reliability of a display device is increased. The display device includes a transistor, an organic insulating film which is provided over the transistor in order to reduce unevenness due to the transistor, and a capacitor over the organic insulating film. An entire surface of the organic insulating film is not covered with components (a transparent conductive layer and an inorganic insulating film) of the capacitor, and a released gas from the organic insulating film can be released to the outside from exposed part of an upper surface of the organic insulating film.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: October 8, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masatoshi Yokoyama, Shigeki Komori, Manabu Sato, Kenichi Okazaki, Shunpei Yamazaki
  • Patent number: 10439074
    Abstract: A semiconductor device with improved electrical characteristics is provided. A semiconductor device with improved field effect mobility is provided. A semiconductor device in which the field-effect mobility is not lowered even at high temperatures is provided. A semiconductor device which can be formed at low temperatures is provided. A semiconductor device with improved productivity can be provided. In the semiconductor device, there is a range of a gate voltage where the field-effect mobility increases as the temperature increases within a range of the gate voltage from 0 V to 10 V. For example, such a range of a gate voltage exists at temperatures ranging from a room temperature (25° C.) to 120° C. In the semiconductor device, the off-state current is kept extremely low (lower than or equal to the detection limit of a measurement device) within the above temperature range.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: October 8, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kenichi Okazaki, Masashi Tsubuku, Satoru Saito, Noritaka Ishihara
  • Patent number: 10439068
    Abstract: To provide a novel oxide semiconductor film. The oxide semiconductor film includes In, M, and Zn. The M is Al, Ga, Y, or Sn. In the case where the proportion of In in the oxide semiconductor film is 4, the proportion of M is greater than or equal to 1.5 and less than or equal to 2.5 and the proportion of Zn is greater than or equal to 2 and less than or equal to 4.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: October 8, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Junichi Koezuka, Kenichi Okazaki, Yasumasa Yamane, Yuhei Sato, Shunpei Yamazaki
  • Patent number: 10431600
    Abstract: A method for manufacturing a highly reliable semiconductor device is provided. The method includes the steps of: forming an oxide semiconductor film at a first temperature; processing the oxide semiconductor film into an island shape; not performing a process at a temperature higher than the first temperature, but depositing a material to be source and drain electrodes by a sputtering method; processing the material to form the source and drain electrodes; forming a protective insulating film, and then forming a first barrier film; adding excess oxygen or oxygen radicals to the protective insulating film through the first barrier film; performing heat treatment at a second temperature lower than 400° C. to diffuse the excess oxygen or oxygen radicals into the oxide semiconductor film; and removing part of the first barrier film and part of the protective insulating film by wet etching, and then forming a second barrier film.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: October 1, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Kenichi Okazaki, Daisuke Kurosaki, Masami Jintyou, Shunpei Yamazaki
  • Publication number: 20190280019
    Abstract: To improve field-effect mobility and reliability in a transistor including an oxide semiconductor film. A semiconductor device includes a transistor including an oxide semiconductor film. The transistor includes a region where the maximum value of field-effect mobility of the transistor at a gate voltage of higher than 0 V and lower than or equal to 10 V is larger than or equal to 40 and smaller than 150; a region where the threshold voltage is higher than or equal to minus 1 V and lower than or equal to 1 V; and a region where the S value is smaller than 0.3 V/decade.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 12, 2019
    Inventors: Shunpei YAMAZAKI, Junichi KOEZUKA, Kenichi OKAZAKI, Yukinori SHIMA, Shinpei MATSUDA, Haruyuki BABA, Ryunosuke HONDA
  • Patent number: 10403760
    Abstract: A novel oxide semiconductor film. An oxide semiconductor film with a small amount of defects. An oxide semiconductor film in which a peak value of the density of shallow defect states at an interface between the oxide semiconductor film and an insulating film is small. The oxide semiconductor film includes In, M (M is Al, Ga, Y, or Sn), Zn, and a region in which a peak value of a density of shallow defect states is less than 1E13 per square cm per volt.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: September 3, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kenichi Okazaki, Junichi Koezuka, Toshimitsu Obonai, Satoru Saito, Shunpei Yamazaki
  • Publication number: 20190259917
    Abstract: A light source device includes a mounted substrate which is a multi-layered substrate, a semiconductor light-emitting device which emits a laser beam, a wavelength-converting member which radiates fluorescence by being irradiated with the laser beam emitted from the semiconductor light-emitting device as an excitation light, a state detection circuit, an electric field effect type transistor which adjusts an electric current amount applied to the semiconductor light-emitting device upon receipt of an output from the state detection circuit, and an external connecting member, and the semiconductor light-emitting device, the state detection circuit, the transistor, and the external connecting member are mounted on the single mounted substrate.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Inventors: Kazuhiko YAMANAKA, Kenichi MATSUMOTO, Hideo YAMAGUCHI, Wakahiko OKAZAKI, Yasuhiko ENAMI, Taku KOBAYASHI, Kazuki ADACHI, Hirotaka UENO
  • Patent number: 10381486
    Abstract: In a transistor including an oxide semiconductor, a change in electrical characteristics is suppressed and reliability is improved. The transistor includes an oxide semiconductor film over a first insulating film; a second insulating film over the oxide semiconductor film; a gate electrode over the second insulating film; a metal oxide film in contact with a side surface of the second insulating film; and a third insulating film over the oxide semiconductor film, the gate electrode, and the metal oxide film. The oxide semiconductor film includes a channel region overlapping with the gate electrode, a source region in contact with the third insulating film, and a drain region in contact with the third insulating film. The source region and the drain region contain one or more of hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, and a rare gas.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: August 13, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichi Koezuka, Kenichi Okazaki, Masami Jintyou, Takahiro Iguchi, Naoto Goto
  • Publication number: 20190244981
    Abstract: To provide a semiconductor device including a planar transistor having an oxide semiconductor and a capacitor. In a semiconductor device, a transistor includes an oxide semiconductor film, a gate insulating film over the oxide semiconductor film, a gate electrode over the gate insulating film, a second insulating film over the gate electrode, a third insulating film over the second insulating film, and a source and a drain electrodes over the third insulating film; the source and the drain electrodes are electrically connected to the oxide semiconductor film; a capacitor includes a first and a second conductive films and the second insulating film; the first conductive film and the gate electrode are provided over the same surface; the second conductive film and the source and the drain electrodes are provided over the same surface; and the second insulating film is provided between the first and the second conductive films.
    Type: Application
    Filed: March 22, 2019
    Publication date: August 8, 2019
    Inventors: Shunpei YAMAZAKI, Kenichi OKAZAKI, Masahiro KATAYAMA, Masataka NAKADA
  • Patent number: 10374184
    Abstract: An object of the invention is to improve the reliability of a light-emitting device. Another object of the invention is to provide flexibility to a light-emitting device having a thin film transistor using an oxide semiconductor film. A light-emitting device has, over one flexible substrate, a driving circuit portion including a thin film transistor for a driving circuit and a pixel portion including a thin film transistor for a pixel. The thin film transistor for a driving circuit and the thin film transistor for a pixel are inverted staggered thin film transistors including an oxide semiconductor layer which is in contact with a part of an oxide insulating layer.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: August 6, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shingo Eguchi, Yoshiaki Oikawa, Kenichi Okazaki, Hotaka Maruyama
  • Patent number: 10373981
    Abstract: A semiconductor device includes a transistor and a capacitor. The transistor includes a first conductive film; a first insulating film including a film containing hydrogen; a second insulating film including an oxide insulating film; an oxide semiconductor film including a first region and a pair of second regions; a pair of electrodes; a gate insulating film; and a second conductive film. The capacitor includes a lower electrode, an inter-electrode insulating film, and an upper electrode. The lower electrode contains the same material as the first conductive film. The inter-electrode insulating film includes a third insulating film containing the same material as the first insulating film and a fourth insulating film containing the same material as the gate insulating film. The upper electrode contains the same material as the second conductive film. A fifth insulating film containing hydrogen is provided over the transistor.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: August 6, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kenichi Okazaki, Masataka Nakada, Masahiro Katayama