Patents by Inventor Kenichi Osada

Kenichi Osada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9658631
    Abstract: A conventional power supply device has a problem in miniaturization. A power supply device generates a prediction value of an error signal from first and second error signals, and controls an output voltage so that the prediction value lies between first and second threshold values. The first error signal is obtained by converting an error voltage based on the difference between the output voltage and a reference voltage at a first timing. The second error signal is obtained by converting an error voltage based on the difference between the output voltage and the reference voltage at a second timing.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: May 23, 2017
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Ming Liu, Tatsuo Nakagawa, Kenichi Osada
  • Patent number: 9646678
    Abstract: Prior known static random access memory (SRAM) cells are required that a diffusion layer be bent into a key-like shape in order to make electrical contact with a substrate with a P-type well region formed therein, which would result in a decrease in asymmetry leading to occurrence of a problem as to the difficulty in micro-patterning. To avoid this problem, the P-type well region in which an inverter making up an SRAM cell is formed is subdivided into two portions, which are disposed on the opposite sides of an N-type well region NW1 and are formed so that a diffusion layer forming a transistor has no curvature while causing the layout direction to run in a direction parallel to well boundary lines and bit lines. At intermediate locations of an array, regions for use in supplying power to the substrate are formed in parallel to word lines in such a manner that one regions is provided per group of thirty two memory cell rows or sixty four cell rows.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: May 9, 2017
    Assignee: Renesas Electronics Corporation
    Inventors: Kenichi Osada, Masataka Minami, Shuji Ikeda, Koichiro Ishibashi
  • Patent number: 9530485
    Abstract: The gate tunnel leakage current is increased in the up-to-date process, so that it is necessary to reduce the gate tunnel leakage current in the LSI which is driven by a battery for use in a cellular phone and which needs to be in a standby mode at a low leakage current. In a semiconductor integrated circuit device, the ground source electrode lines of logic and memory circuits are kept at a ground potential in an active mode, and are kept at a voltage higher than the ground potential in an unselected standby mode. The gate tunnel leakage current can be reduced without destroying data.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: December 27, 2016
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Kenichi Osada, Koichiro Ishibashi, Yoshikazu Saitoh, Akio Nishida, Masaru Nakamichi, Naoki Kitai
  • Publication number: 20160329091
    Abstract: Prior known static random access memory (SRAM) cells are required that a diffusion layer be bent into a key-like shape in order to make electrical contact with a substrate with a P-type well region formed therein, which would result in a decrease in asymmetry leading to occurrence of a problem as to the difficulty in micro-patterning. To avoid this problem, the P-type well region in which an inverter making up an SRAM cell is formed is subdivided into two portions, which are disposed on the opposite sides of an N-type well region NW1 and are formed so that a diffusion layer forming a transistor has no curvature while causing the layout direction to run in a direction parallel to well boundary lines and bit lines. At intermediate locations of an array, regions for use in supplying power to the substrate are formed in parallel to word lines in such a manner that one regions is provided per group of thirty two memory cell rows or sixty four cell rows.
    Type: Application
    Filed: July 21, 2016
    Publication date: November 10, 2016
    Inventors: Kenichi Osada, Masataka Minami, Shuji Ikeda, Koichiro Ishibashi
  • Patent number: 9449678
    Abstract: A P-type well region in which an inverter making up an SRAM cell is formed is subdivided into two portions, which are disposed on the opposite sides of an N-type well region NW1 and are formed so that a diffusion layer forming a transistor has no curvature while causing the layout direction to run in a direction parallel to well boundary lines and bit lines. At intermediate locations of an array, regions for use in supplying power to the substrate are formed in parallel to word lines in such a manner that one region is provided per group of thirty two memory cell rows or sixty four cell rows.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: September 20, 2016
    Assignee: Renesas Electronics Corporation
    Inventors: Kenichi Osada, Masataka Minami, Shuji Ikeda, Koichiro Ishibashi
  • Patent number: 9318397
    Abstract: A semiconductor device includes: a first circuit block formed on a first semiconductor substrate having first and second sides extending in a first direction and third and fourth sides extending in a second direction intersecting with the first direction; a plurality of signal-line through vias that are connected to the first semiconductor substrate and transmit signals, which are output from the first circuit block, to a second circuit block formed on another second semiconductor substrate; and a plurality of power-supply through vias for supplying power to the first circuit block, and in the semiconductor device, the plurality of power-supply through vias are formed at edges of the first semiconductor substrate along the third and fourth sides and are formed in a plurality of rows in the first direction. Each circuit block has a power consuming mode in which power larger than the power consumption in a normal mode is consumed.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: April 19, 2016
    Assignee: Hitachi, Ltd.
    Inventors: Masanao Yamaoka, Kenichi Osada
  • Patent number: 9286968
    Abstract: Prior known static random access memory (SRAM) cells required that a diffusion layer be bent into a key-like shape in order to make electrical contact with a substrate with a P-type well region formed therein, which would result in a decrease in asymmetry leading to difficulty in micro-patterning. To avoid this problem, the P-type well region in which an inverter making up an SRAM cell is formed is subdivided into two portions, which are disposed on the opposite sides of an N-type well region NW1 and are formed so that a diffusion layer forming a transistor has no curvature while causing the layout direction to run in a direction parallel to well boundary lines and bit lines. At intermediate locations of an array, regions for use in supply power to the substrate are formed in parallel to word lines.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 15, 2016
    Assignee: Renesas Electronics Corporation
    Inventors: Kenichi Osada, Masataka Minami, Shuji Ikeda, Koichiro Ishibashi
  • Publication number: 20160071573
    Abstract: A logic circuit in a system LSI is provided with a power switch so as to cut off the switch at the time of standby, reducing leakage current. At the same time, an SRAM circuit of the system LSI controls a substrate bias to reduce leakage current.
    Type: Application
    Filed: November 13, 2015
    Publication date: March 10, 2016
    Inventors: Masanao Yamaoka, Koichiro Ishibashi, Shigezumi Matsui, Kenichi Osada
  • Publication number: 20160062704
    Abstract: In a semiconductor device in which components to be a basic configuration unit are arranged in an array shape for calculating an interaction model, a technique capable of changing a topology between the components is provided. A semiconductor device includes a plurality of units each of which includes a first memory cell for storing a value indicating a state of one node of an interaction model, a second memory cell for storing an interaction coefficient indicating an interaction from a node connected to the one node, and a calculation circuit for determining a value indicating a next state of the one node based on a value indicating a state of the connected node and on the interaction coefficient. In addition, the semiconductor device includes a plurality of switches for connecting or disconnecting the plurality of units to/from each other.
    Type: Application
    Filed: March 10, 2015
    Publication date: March 3, 2016
    Applicant: HITACHI, LTD.
    Inventors: Masanao YAMAOKA, Kenichi OSADA, Chihiro YOSHIMURA
  • Publication number: 20160049188
    Abstract: A P-type well region in which an inverter making up an SRAM cell is formed is subdivided into two portions, which are disposed on the opposite sides of an N-type well region NW1 and are formed so that a diffusion layer forming a transistor has no curvature while causing the layout direction to run in a direction parallel to well boundary lines and bit lines. At intermediate locations of an array, regions for use in supplying power to the substrate are formed in parallel to word lines in such a manner that one region is provided per group of thirty two memory cell rows or sixty four cell rows.
    Type: Application
    Filed: June 26, 2015
    Publication date: February 18, 2016
    Inventors: Kenichi OSADA, Masataka Minami, Shuji Ikeda, Koichiro Ishibashi
  • Patent number: 9214221
    Abstract: A semiconductor device is provided. The semiconductor device includes a logic circuit, an SRAM circuit coupled to a power line, and a switch coupled between the logic circuit and the power line. Before the switch is changed to an off position, a part of information held in the logic circuit is transferred to the SRAM circuit.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: December 15, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Masanao Yamaoka, Koichiro Ishibashi, Shigezumi Matsui, Kenichi Osada
  • Publication number: 20150357026
    Abstract: The gate tunnel leakage current is increased in the up-to-date process, so that it is necessary to reduce the gate tunnel leakage current in the LSI which is driven by a battery for use in a cellular phone and which needs to be in a standby mode at a low leakage current. In a semiconductor integrated circuit device, the ground source electrode lines of logic and memory circuits are kept at a ground potential in an active mode, and are kept at a voltage higher than the ground potential in an unselected standby mode. The gate tunnel leakage current can be reduced without destroying data.
    Type: Application
    Filed: August 14, 2015
    Publication date: December 10, 2015
    Inventors: Kenichi OSADA, Koichiro ISHIBASHI, Yoshikazu SAITOH, Akio NISHIDA, Masaru NAKAMICHI, Naoki KITAI
  • Patent number: 9111636
    Abstract: The gate tunnel leakage current is increased in the up-to-date process, so that it is necessary to reduce the gate tunnel leakage current in the LSI which is driven by a battery for use in a cellular phone and which needs to be in a standby mode at a low leakage current. In a semiconductor integrated circuit device, the ground source electrode lines of logic and memory circuits are kept at a ground potential in an active mode, and are kept at a voltage higher than the ground potential in an unselected standby mode. The gate tunnel leakage current can be reduced without destroying data.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: August 18, 2015
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Kenichi Osada, Koichiro Ishibashi, Yoshikazu Saitoh, Akio Nishida, Masaru Nakamichi, Naoki Kitai
  • Patent number: 9087822
    Abstract: To provide a semiconductor device having a high efficiency of arranging a TSV, there is provided a semiconductor device which is stacked with a semiconductor chip, and in which the semiconductor chips contiguous each other are electrically connected by plural TSVs, the semiconductor chip includes a core circuit and plural IO circuits arranged at a surrounding thereof, the TSV is arranged in the core circuit, and a pitch of arranging the TSVs is an integer-fold of a cell pitch of a library configuring the core circuit.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: July 21, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Futoshi Furuta, Kenichi Osada
  • Publication number: 20150155031
    Abstract: The gate tunnel leakage current is increased in the up-to-date process, so that it is necessary to reduce the gate tunnel leakage current in the LSI which is driven by a battery for use in a cellular phone and which needs to be in a standby mode at a low leakage current. In a semiconductor integrated circuit device, the ground source electrode lines of logic and memory circuits are kept at a ground potential in an active mode, and are kept at a voltage higher than the ground potential in an unselected standby mode. The gate tunnel leakage current can be reduced without destroying data.
    Type: Application
    Filed: July 3, 2014
    Publication date: June 4, 2015
    Inventors: Kenichi OSADA, Koichiro ISHIBASHI, Yoshikazu SAITOH, Akio NISHIDA, Masaru NAKAMICHI, Naoki KITAI
  • Publication number: 20150049541
    Abstract: When threshold voltages of constituent transistors are reduced in order to operate an SRAM circuit at a low voltage, there is a problem in that a leakage current of the transistors is increased and, as a result, electric power consumption when the SRAM circuit is not operated while storing data is increased. Therefore, there is provided a technique for reducing the leakage current of MOS transistors in SRAM memory cells MC by controlling a potential of a source line ssl of the driver MOS transistors in the memory cells.
    Type: Application
    Filed: September 12, 2014
    Publication date: February 19, 2015
    Inventors: Masanao YAMAOKA, Kenichi OSADA, Kazumasa YANAGISAWA
  • Patent number: 8908345
    Abstract: In a stacked chip system, an IO circuit connected to a TSV pad for IO and a switch circuit constitute an IO channel in each chip, the IO channels as many as the maximum scheduled number of stacks are coupled together and connected to constitute an IO group, and the chip has one or more such IO groups. Each TSV pad for IO is connected with a through via to an IO terminal at the same position in a chip of another layer. On an interposer, if the actual number of stacks is less than the maximum scheduled number of stacks, connection pads for IO in adjacent IO groups on the interposer are connected via a conductor.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: December 9, 2014
    Assignee: Hitachi,Ltd.
    Inventors: Futoshi Furuta, Kenichi Osada
  • Patent number: 8867262
    Abstract: A semiconductor device includes plural memory cells each having a first inverter and a second inverter, with an input of the first inverter being coupled to an output of the second inverter and an input of the second inverter being coupled to an output of the first inverter. The first and second inverters have drive transistors supplied with a source voltage where the source voltage is raised in response to a level shift of a control signal supplied to a switch of a control circuit. The control circuit further includes a resistance element in parallel with a MOS transistor connected as a diode.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: October 21, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Masanao Yamaoka, Kenichi Osada, Kazumasa Yanagisawa
  • Publication number: 20140219010
    Abstract: A logic circuit in a system LSI is provided with a power switch so as to cut off the switch at the time of standby, reducing leakage current. At the same time, an SRAM circuit of the system LSI controls a substrate bias to reduce leakage current.
    Type: Application
    Filed: April 4, 2014
    Publication date: August 7, 2014
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Masanao Yamaoka, Koichiro Ishibashi, Shigezumi Matsui, Kenichi Osada
  • Patent number: 8797791
    Abstract: The gate tunnel leakage current is increased in the up-to-date process, so that it is necessary to reduce the gate tunnel leakage current in the LSI which is driven by a battery for use in a cellular phone and which needs to be in a standby mode at a low leakage current. In a semiconductor integrated circuit device, the ground source electrode lines of logic and memory circuits are kept at a ground potential in an active mode, and are kept at a voltage higher than the ground potential in an unselected standby mode. The gate tunnel leakage current can be reduced without destroying data.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: August 5, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Kenichi Osada, Koichiro Ishibashi, Yoshikazu Saitoh, Akio Nishida, Masaru Nakamichi, Naoki Kitai