Patents by Inventor Kenji Senda

Kenji Senda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7673615
    Abstract: An engine ECU executes: calculating 15-degrees integrated value integrating vibration intensity for each of six crank angle ranges; detecting an amount of change in the 15-degrees integrated value between ignition cycles; specifying two ranges having larger amounts of change; specifying a crank angle having intensity larger than that of a neighboring crank angle in a search range determined to be the same as the specified ranges; calculating a coefficient of correlation K corresponding to a difference between a vibration waveform and a knock waveform model while the specified crank angle is matched with a timing at which intensity peaks in the knock waveform model; and, if the coefficient of correlation K is larger than a threshold value K(0), determining that knock has occurred.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: March 9, 2010
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Shuhei Oe, Kouzi Ohara, Satoshi Masuda, Yuuichi Takemura, Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako
  • Patent number: 7669582
    Abstract: An engine ECU executes a program including the steps of: calculating a correlation coefficient K based on the result of comparing a vibration waveform of an engine and a knock waveform model stored previously; calculating a magnitude value LOG(V) from the magnitude V detected based on a signal transmitted from a knock sensor; creating frequency distribution of magnitude values LOG(V) by using magnitude values LOG(V) in an ignition cycle in which the correlation coefficient K larger than a threshold K(1) is calculated; and counting knock proportion KC by using the created frequency distribution. If the vibration waveform includes a waveform of vibration of noise components, the correlation coefficient K is calculated to be smaller comparing with a case of not including it.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: March 2, 2010
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Koji Aso, Kenji Senda, Shigeru Kamio, Yuichi Takemura
  • Patent number: 7669459
    Abstract: An engine ECU includes a bandpass filter (1) extracting only vibrations at a first frequency band A, a bandpass filter (2) extracting only vibrations at a second frequency band B, a bandpass filter (3) extracting only vibrations at a third frequency band C, and a bandpass filter (4) extracting only vibrations at a fourth frequency band D including the first to third frequency bands A-C. The engine ECU determines whether knocking occurred or not based on a vibration waveform of the fourth frequency band D and a peak value in magnitude of vibrations in a synthesized waveform of the first to third frequency bands.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: March 2, 2010
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Masatomo Yoshihara, Kenji Kasashima, Rihito Kaneko, Koji Aso, Kenji Senda, Yuichi Takemura, Kiyoshi Iwade, Shuhei Oe
  • Patent number: 7653477
    Abstract: An engine ECU executes a program including: determining whether or not a condition for stopping knocking determination is satisfied; setting a flag of stopping correction of a determination value to “ON”; calculating a knock determination level based on the extracted magnitude value; and when the correction stop flag is not “ON”, decreasing or increasing the determination value in accordance with a knock proportion KC that is a proportion of magnitude values greater than the knock determination level. The knock determination level is calculated even when the correction stop flag is “ON”.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: January 26, 2010
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Masatomo Yoshihara, Kenji Kasashima, Rihito Kaneko, Koji Aso, Kenji Senda, Yuichi Takemura, Shuhei Oe
  • Patent number: 7637247
    Abstract: An engine ECU executes a program including a step of, when it has temporarily been determined that knocking had occurred because of the presence of an integrated value greater than a product of the reference magnitude and coefficient Y among the integrated values of vibration in fourth frequency band D that includes first to third frequency bands A to C, calculating knock magnitude N using the integrated values in the synthesized waveform of first to third frequency bands A to C and correlation coefficient K calculated from a vibration waveform of fourth frequency band D. Based on a comparison between knock magnitude N and determination value V(KX), whether or not knocking has occurred is determined. If there is no integrated value greater than a product of the reference magnitude and coefficient Y, it is determined that knocking has not occurred.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: December 29, 2009
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Yuichi Takemura, Shuhei Oe
  • Patent number: 7621172
    Abstract: An engine ECU 200 includes a bandpass filter (1), a bandpass filter (2), and a bandpass filter (3). The bandpass filter (1) extracts only vibrations at a first frequency band A from the vibrations detected by a knock sensor. The bandpass filter (2) extracts only vibrations at a second frequency band B from the vibrations detected by the knock sensor. The bandpass filter (3) extracts only vibrations at a third frequency band C from the vibrations detected by the knock sensor. The first to third frequency bands A-C are identical in bandwidth. The engine ECU calculates a peak value in magnitude of vibrations in a synthesized waveform of these frequency bands, and determines whether knocking occurred or not based on the peak value.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: November 24, 2009
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Masatomo Yoshihara, Kenji Kasashima, Rihito Kaneko, Koji Aso, Kenji Senda, Shigeru Kamio, Yuichi Takemura
  • Patent number: 7588015
    Abstract: An engine ECU executes a program including a step of, when an absolute value of a difference between a determination value V(KX) used for determining presence or absence of knocking and a maximum value V(MAX) of magnitude value LOG(V), which is obtained by logarithmically converting a magnitude V detected based on a signal sent from a knock sensor, is greater than the product of a standard deviation ? and a coefficient U(3) in a frequency distribution of magnitude values LOG(V) for N cycle(s), setting a value obtained by adding the product of the standard deviation ? and the coefficient U(3) to the maximum value V(MAX) of the magnitude value LOG(V) as the determination value V(KX).
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: September 15, 2009
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Koji Aso, Kenji Senda, Yuichi Takemura, Shuhei Oe, Kiyoshi Iwade
  • Publication number: 20090217908
    Abstract: An engine ECU executes a program including the steps of: calculating a knock magnitude N by dividing an integrated value lpkknk obtained by integrating the magnitude of vibration in the knock detection gate by BGL; controlling ignition timing according to a result of comparison between knock magnitude N and a determination value VJ; stopping updating of a standard deviation ? when it is determined that determination value VJ to be compared with knock magnitude N is to be changed; updating a median value VM by increasing an update amount of median value VM; and updating BGL according to median value VM and standard deviation ?.
    Type: Application
    Filed: March 2, 2009
    Publication date: September 3, 2009
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Satoshi Watanabe, Hiroto Tanaka, Rihito Kaneko, Norihito Hanai, Kenji Senda, Satoshi Masuda
  • Publication number: 20090165746
    Abstract: An engine ECU executes a program including: a step (S310) of multiplying a correction amount of a determination value V(KX) by Q, when deviation L between an approximation value V(R), which is an average value of determination values V(KX) corrected according to the occurrence frequency of knocking, and an approximation value V(R?1) previously calculated is greater than a predetermined value (NO in S306) or when the number of times where deviation L is determined to be smaller than a predetermined value is smaller than a predetermined number of times (NO in S308); and a step (S312) of multiplying the correction amount of the determination value V(KX) by 1/P, when the number of times where the deviation L is determined to be smaller than a predetermined value is greater than a predetermined number of times (YES in S308). By comparing the determination value V(KX) and knock magnitude, determination of knocking is made, and ignition timing is advanced or retarded.
    Type: Application
    Filed: December 8, 2006
    Publication date: July 2, 2009
    Applicants: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Koji Aso, Kenji Kasashima, Rihito Kaneko, Masatomo Yoshihara, Kenji Senda, Yuichi Takemura, Shuhei Oe
  • Publication number: 20090158816
    Abstract: A knocking judgement method for an internal combustion engine, in which an engine ECU executes a program judging whether or not such ones of integrated values calculated by integrating the output of a knock sensor at every five degrees of a crank angle are larger than a tentative knock judgement value, in vibrations of a fourth frequency band containing the resonance frequency of the engine, tentatively judging that a knocking has occurred, in case the integrated value larger than the tentative knock judgement value is a predetermined number or more, and judging that no knocking has occurred, in case the integrated value larger than the tentative knock judgement value is not more than the predetermined number.
    Type: Application
    Filed: May 23, 2007
    Publication date: June 25, 2009
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Yuuichi Takemura, Shuhei Oe
  • Publication number: 20090150058
    Abstract: An engine ECU executes a program including the steps of: calculating a coefficient of correlation K in accordance with a result of comparing a waveform of a vibration of a frequency band including a resonance frequency of an engine with a knock waveform model previously created as a waveform of a vibration caused when the engine knocks (S112); calculating a knock intensity N from an intensity of a vibration of a frequency band excluding the resonance frequency of the engine (S114); if knock intensity N is larger than a reference value and coefficient of correlation K is larger than a threshold value (YES at S116), determining that the engine knocks (S118); and if knock intensity N is smaller than the reference value and/or coefficient of correlation K is smaller than the threshold value, determining that the engine does not knock (S122).
    Type: Application
    Filed: June 5, 2007
    Publication date: June 11, 2009
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yuuichi Takemura, Shuhei Oe
  • Publication number: 20090120410
    Abstract: A 90° integrated value calculating unit of an engine ECU calculates a 90° integrated value obtained by integrating a magnitude. A calculating unit calculates a knock magnitude by dividing 90° integrated value by a BGL. A value obtained by subtracting a standard deviation ? from a median value of 90° integrated value is determined as the BGL. An ignition timing control unit controls the ignition timing depending on whether knock magnitude is equal to or larger than a determination value. A median value calculating unit calculates median value of 90° integrated value. A standard deviation calculating unit calculates standard deviation of 90° integrated value. A first stop unit stops updating of median value and standard deviation when 90° integrated value is smaller than a first threshold value or is equal to or larger than a second threshold value.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 14, 2009
    Inventors: Rihito Kaneko, Hiroto Tanaka, Satoshi Watanabe, Norihito Hanai, Yasuhiro Yamasako, Kenji Senda, Satoshi Masuda
  • Patent number: 7500468
    Abstract: An engine ECU executes a program including the steps of: determining that the condition that there is a possibility of occurrence of knocking is satisfied, based on the result of comparison between a vibration waveform of an engine and a knock waveform model; calculating a 40CA integrated value by integrating magnitudes of vibration occurring in the engine for a range of crank angle of 40°; calculating a knock magnitude N by dividing the 40CA integrated value by a BGL; determining that knocking has occurred when the knock magnitude N is larger than a determination value V(KX); and determining that knocking has not occurred when the knock magnitude N is smaller than the determination value V(KX).
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: March 10, 2009
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Yuuichi Takemura, Shuhei Oe
  • Publication number: 20090038384
    Abstract: Out of synthesized waveforms of vibrations in a first frequency band A to a third frequency band C, a knock magnitude N is calculated by using a portion ? having an integrated value greater than a reference magnitude in a knock region but not using a portion having an integrated value greater than the reference magnitude out of the knock region (i.e., a region obtained by excluding the knock region from a knock detecting gate). In a case where knock magnitude N is greater than a determination value V(KX), it is determined that knocking occurs. In contrast, in a case where knock magnitude N is not greater than determination value V(KX), it is determined that no knocking occurs.
    Type: Application
    Filed: May 21, 2007
    Publication date: February 12, 2009
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Yuuichi Takemura, Shuhei Oe
  • Publication number: 20090043484
    Abstract: An engine ECU executes a program including: determining whether or not a condition for stopping knocking determination is satisfied; setting a flag of stopping correction of a determination value to “ON”; calculating a knock determination level based on the extracted magnitude value; and when the correction stop flag is not “ON”, decreasing or increasing the determination value in accordance with a knock proportion KC that is a proportion of magnitude values greater than the knock determination level. The knock determination level is calculated even when the correction stop flag is “ON”.
    Type: Application
    Filed: January 24, 2007
    Publication date: February 12, 2009
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION, NIPPON SOKEN, INC
    Inventors: Masatomo Yoshihara, Kenji Kasashima, Rihito Kaneko, Koji Aso, Kenji Senda, Yuichi Takemura, Shuhei Oe
  • Patent number: 7478624
    Abstract: An engine ECU executes a program including a step of calculating intensity values LOG(V), a step of detecting vibration waveforms, a step of calculating a correlation coefficient K based on vibration waveforms, a step of preparing frequency distribution of intensity values LOG(V) smaller than a threshold V(1) and intensity values LOG(V) in an ignition cycle where correlation coefficient K is larger than a threshold K(1), a step of calculating a knock determination level V(KD) based on a median V(50) and a standard deviation ? of intensity values LOG(V), and a step of counting the number of intensity values LOG(V) larger than knock determination level V(KD) as the number of times that knocking has occurred.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: January 20, 2009
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Koji Aso, Kenji Senda, Shigeru Kamio, Yuichi Takemura
  • Patent number: 7478622
    Abstract: An engine ECU executes a program including the steps of: calculating a magnitude value LOG(V) by logarithmically converting a magnitude V of vibration occurring in an engine, calculating a median V(50) and a standard deviation ? of magnitude values LOG(V); and setting, to the product of the standard deviation ? and a factor A, a first upper limit of a determination value V(KX) that is to be compared with a knock magnitude N for determining whether or not knocking has occurred, and setting a first lower limit of the determination value V(KX) to the product of the standard deviation ? and a factor B.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: January 20, 2009
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Yuuichi Takemura, Shuhei Oe
  • Publication number: 20090015365
    Abstract: A surface mount current fuse of the present invention includes a first base which has a recess and is smaller in width at the other end than at one end in the longitudinal direction, and a second base which has the same shape as the first base. The first base and the second base are combined to form a box-shaped body by joining the lower surface of the second base to the upper surface of the upper surface of the first base in such a manner that one end of the first base and the other end of the second base are in contact with each other. The recess of the first base and the recess of the second base form a space portion in which to dispose an element portion. The borderline between the first base and the second base passes through the center point on a side surface of the body. As a result, the surface mount current fuse has high production efficiency.
    Type: Application
    Filed: March 14, 2007
    Publication date: January 15, 2009
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Tomoyuki Washizaki, Toshiyuki Iwao, Kenji Senda, Takashi Watanabe, Kazutoshi Matsumura, Seiji Tsuda
  • Patent number: 7473487
    Abstract: A thermal fuse includes an insulating case having a bottom and having an opening provided therein, a fusible alloy provided in the insulating case, a lead conductor having one end connected to the fusible alloy and other end led out from the insulating case through the opening of the insulating case, a flux provided on the fusible alloy, and a sealer for sealing the opening of the insulating case. The volume of a space between the fusible alloy in the insulating case and the sealer is larger than the volume of the flux. Sealing of the fuse is prevented from deteriorating, and the insulating film is prevented from damage even when the thermal fuse is used for breaking a large current at a high voltage.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: January 6, 2009
    Assignee: Panasonic Corporation
    Inventors: Kenji Senda, Atsushi Kono, Tatsuya Wada
  • Publication number: 20090005956
    Abstract: An engine ECU executes a program including a step of setting a search range of the crank angle of a peak value P that is the largest integrated value in a vibration waveform of an engine detected by calculating integrated values that are integrals of output voltage values of a knock sensor for every five degrees of a crank angle such that the search range may include the crank angle increasing with increase in engine speed NE, and a step of detecting the crank angle of the largest integrated value in the search range, and setting the detected crank angle as the crank angle of peak value P in the vibration waveform. At the crank angle based on the crank angle of peak value P, the vibration waveform is compared with a knock waveform model.
    Type: Application
    Filed: May 28, 2007
    Publication date: January 1, 2009
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION, NIPPON SOKEN INC.
    Inventors: Masatomo Yoshihara, Kenji Kasashima, Rihito Kaneko, Kenji Senda, Yuuichi Takemura, Shuhei Oe