Patents by Inventor Kenneth L. Shepard

Kenneth L. Shepard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240148329
    Abstract: An exemplary vascular neural interface device/configuration and method can be provided for at least one of stimulating or recording the nervous system. For example, a package can be provided which can be inserted within a blood vessel. The package can include at least one transducer, at least one electrode, and at least one integrated circuit. The at least one transducer can receive or transmit a wireless signal which is used to provide energy or communicate with the at least one integrated circuit to at least one of record or stimulate the nervous system using recording electronics or stimulating electronics.
    Type: Application
    Filed: November 13, 2023
    Publication date: May 9, 2024
    Inventors: Kenneth L. SHEPARD, John William STANTON, Giovanni Talei FRANZESI, Ed BOYDEN
  • Patent number: 11624727
    Abstract: A system and method for detecting a single-molecule using an integrated circuit which includes at least one membrane having a nanopore located between first and second reservoirs and a low-noise preamplifier having an electrode formed on the surface thereof is provided. The method includes passing a target molecule through the nanopore, and measuring a current through the nanopore to detect the presence of a biomolecular entity, if any.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: April 11, 2023
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jacob Rosenstein, Kenneth L. Shepard
  • Patent number: 11617890
    Abstract: Systems and methods for providing neural stimulation and recording on a subject using flexible complementary CMOS probes are provided. Disclosed systems can include a flexible probe adapted for insertion into a portion of a brain of the subject, the flexible probe comprising a tail portion and a head portion. The tail portion can include a plurality of electrodes configured to be coupled to the brain and a plurality of front-end amplifiers. Each of the plurality of front-end amplifiers can be configured to amplify a signal received from a corresponding electrode of the plurality of electrodes. The head portion can include one or more inductors configured to enable two-way communication with a wireless reader through a near-field inductive link.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: April 4, 2023
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Kenneth L. Shepard, David Tsai, Hongki Kang, Jordan Thimot
  • Publication number: 20220218265
    Abstract: Exemplary embodiments of the present disclosure provide for an integrated, flexible, implantable, optical neural interrogation apparatus, computer-accessible medium, system, and method for use thereof An integrated, flexible, fully-implantable, all-optical neural interrogation apparatus can include, e.g., a 2-dimensional (2D) planar array of optical photodetectors on an integrated electronic chip, the integrated electronic chip including control logic and image-capturing electronic circuitry, an amplitude or phase optical imaging mask for imaging, and a biocompatible packaging.
    Type: Application
    Filed: January 24, 2022
    Publication date: July 14, 2022
    Inventors: Kenneth L. SHEPARD, Sajjad MOAZENI, Eric POLLMANN
  • Publication number: 20220079520
    Abstract: An exemplary diffuse optical tomography (DOT) device, can be provided, which can include, for example, a flexible substrate, an optical source(s) configured to generate a plurality of near infrared (NIR) photons disposed on the flexible substrate, and a plurality of detectors disposed on the flexible substrate, wherein each of the detectors can be configured to detect a plurality of backscattered NIR photons from an anatomical structure(s) that can be based on the NIR photons. The flexible substrate can be configured to be applied to an anatomical structure. The detectors can be an array of single photon avalanche diode (SPAD) detectors. The detectors can be configured to measure an arrival time of the backscattered NIR photons. The array can be disposed on a CMOS integrated circuit chip, which can be disposed on the flexible substrate.
    Type: Application
    Filed: November 29, 2021
    Publication date: March 17, 2022
    Inventors: KENNETH L. SHEPARD, SAJJAD MOAZENI, KEVIN RENEHAN
  • Publication number: 20220082549
    Abstract: Exemplary embodiments of the present invention provide for an integrated electrophysiology amplifying apparatus, computer-accessible medium, system and method for use thereof. In accordance with certain exemplary embodiments of the present disclosure, an integrated electrophysiology amplifying system can include: a pipette interface for receiving a pipette or sharp microelectrode; and an integrated circuit having (i) an amplifier coupled to the pipette interface and configured to control a current through a connected pipette or record a cell membrane voltage and (ii) at least one compensation circuit using negative feedback; wherein the integrated circuit and pipette interface are physically integrated within a common housing.
    Type: Application
    Filed: November 24, 2021
    Publication date: March 17, 2022
    Inventors: Siddharth Shekar, Krishna Jayant, Kenneth L. Shepard
  • Publication number: 20210308468
    Abstract: Systems and methods for providing neural stimulation and recording on a subject using flexible complementary CMOS probes are provided. Disclosed systems can include a flexible probe adapted for insertion into a portion of a brain of the subject, the flexible probe comprising a tail portion and a head portion. The tail portion can include a plurality of electrodes configured to be coupled to the brain and a plurality of front-end amplifiers. Each of the plurality of front-end amplifiers can be configured to amplify a signal received from a corresponding electrode of the plurality of electrodes. The head portion can include one or more inductors configured to enable two-way communication with a wireless reader through a near-field inductive link.
    Type: Application
    Filed: October 12, 2020
    Publication date: October 7, 2021
    Inventors: Kenneth L. Shepard, David Tsai, Hongki Kang, Jordan Thimot
  • Patent number: 10921314
    Abstract: Methods of making an integrated circuit for a single-molecule nucleic-acid assay platform. In one example, the method includes adhering a carbon nanotube to a surface of a transfer film, the transfer film comprising gold or a polymer; placing the surface of the transfer film on a CMOS integrated circuit; releasing the carbon nanotube from the transfer film; and forming a pair of post-processed electrodes proximate opposing ends of the carbon nanotube, the post-processed electrodes electrically connecting the carbon nanotube to the CMOS integrated circuit. The method can also include exposing the carbon nanotube to a diazonium salt solution to form a point defect on a portion of the carbon nanotube.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: February 16, 2021
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Kenneth L. Shepard, Steven Warren, Scott Trocchia, Yoonhee Lee, Erik Young
  • Patent number: 10898168
    Abstract: Apparatus and methods for powering micron-scale implantable and injectable integrated circuit (IC) chips for in-vivo sensing and acquisition of various physiological signals are provided. The disclosed subject matter includes the integration of piezoelectric transducers, such as polyvinylidene fluoride (PVDF) or lead zirconate titanate (PZT), onto implantable and injectable IC chips for power transfer and data transmission using ultrasound waves generated from commercial ultrasound imaging equipment.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: January 26, 2021
    Assignee: The Trustees of Columbia University in the city of New York
    Inventors: Kenneth L. Shepard, Hongki Kang, Jordan Thimot, Chen Shi
  • Patent number: 10799705
    Abstract: Systems and methods for providing neural stimulation and recording on a subject using flexible complementary CMOS probes are provided. Disclosed systems can include a flexible probe adapted for insertion into a portion of a brain of the subject, the flexible probe comprising a tail portion and a head portion. The tail portion can include a plurality of electrodes configured to be coupled to the brain and a plurality of front-end amplifiers. Each of the plurality of front-end amplifiers can be configured to amplify a signal received from a corresponding electrode of the plurality of electrodes. The head portion can include one or more inductors configured to enable two-way communication with a wireless reader through a near-field inductive link.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: October 13, 2020
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Kenneth L. Shepard, David Tsai, Hongki Kang, Jordan Thimot
  • Patent number: 10718732
    Abstract: Electrochemical sensing of biomolecules eliminates the need for bulky optical instruments required in traditional fluorescence-based sensing assays. Integration of the sensor interface electrodes and active electrochemical detection circuitry on CMOS substrates miniaturizes the sensing platform, enhancing portability for point-of-care applications, while enabling high-throughput, highly-parallel analysis. One embodiment includes a four-by-four active sensor array for multiplexed electrochemical biomolecular detection in a standard 0.25-?m CMOS process. Integrated potentiostats, including control amplifiers and dual-slope ADCs, stimulate the electrochemical cell and detect the current flowing through on-chip gold electrodes at each sensor site resulting from biomolecular reactions occurring on the chip surface. Post-processing techniques for fabricating biologically-compatible surface-electrode arrays in CMOS that can withstand operation in harsh electrochemical environments are described.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: July 21, 2020
    Assignee: The Trustees Of Columbia University In The City of New York
    Inventors: Peter M. Levine, Kenneth L. Shepard, Ping Gong, Levicky Rastislav
  • Patent number: 10684240
    Abstract: A method for single-molecule detection is provided and uses a carbon nanotube having a probe entity attached thereto to define a first state of the carbon nanotube. The carbon nanotube is introduced to a target entity to define a second state of the carbon nanotube. The electrical conductance of the carbon nanotube in the first and second states is compared to detect the presence of a biomolecular entity. A system for single-molecule detection including a carbon nanotube is also provided.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: June 16, 2020
    Assignee: The Trustees Of Columbia University In the City of New York
    Inventors: Sebastian Sorgenfrei, Kenneth L. Shepard, Chien-Yang Chiu, Colin Nuckolls, Steven Warren
  • Patent number: 10627364
    Abstract: Method for interfacing an integrated circuit with a biological ion channel, the integrated circuit being at least partially disposed within an electrolytic solution and including an amplifier and one or more electrodes on a surface thereof, includes forming one or more microwells proximate the one or more electrodes, applying a lipid membrane over the integrated circuit proximate the microwells, and placing a further electrode in the electrolytic solution proximate the lipid membrane on a side opposite the integrated circuit. A biological ion channel interface is also provided.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: April 21, 2020
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Kenneth L. Shepard, Jacob Rosenstein, Siddharth Ramakrishnan, Jared Roseman
  • Publication number: 20190343485
    Abstract: An ultrasound phased array integrated in flexible CMOS technology is provided. The CMOS IC chip is fabricated through various chip-thinning techniques, resulting in mechanical flexibility, robustness, and minimized mechanical loading for the piezoelectric transducers. The ultrasound phased array CMOS patch can allow for the generation of high intensity focal regions for maximum penetration in regions of interest.
    Type: Application
    Filed: December 27, 2017
    Publication date: November 14, 2019
    Inventors: KENNETH L. SHEPARD, Tiago COSTA, KEVIN TIEN, Chen SHI
  • Publication number: 20190317084
    Abstract: Methods of making an integrated circuit for a single-molecule nucleic-acid assay platform. In one example, the method includes adhering a carbon nanotube to a surface of a transfer film, the transfer film comprising gold or a polymer; placing the surface of the transfer film on a CMOS integrated circuit; releasing the carbon nanotube from the transfer film; and forming a pair of post-processed electrodes proximate opposing ends of the carbon nanotube, the post-processed electrodes electrically connecting the carbon nanotube to the CMOS integrated circuit. The method can also include exposing the carbon nanotube to a diazonium salt solution to form a point defect on a portion of the carbon nanotube.
    Type: Application
    Filed: May 31, 2019
    Publication date: October 17, 2019
    Inventors: Kenneth L. Shepard, Steven Warren, Scott Trocchia, Yoonhee Lee, Erik Young
  • Patent number: 10401353
    Abstract: Integrated circuits for a single-molecule nucleic-acid assay platform, and methods for making such circuits are disclosed. In one example, a method includes transferring one or more carbon nanotubes to a complementary metal-oxide semiconductor (CMOS) substrate, and forming a pair of post-processed electrodes on the substrate proximate opposing ends of the one or more carbon nanotubes.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: September 3, 2019
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Kenneth L. Shepard, Steven Warren
  • Publication number: 20180193000
    Abstract: Apparatus and methods for powering micron-scale implantable and injectable integrated circuit (IC) chips for in-vivo sensing and acquisition of various physiological signals are provided. The disclosed subject matter includes the integration of piezoelectric transducers, such as polyvinylidene fluoride (PVDF) or lead zirconate titanate (PZT), onto implantable and injectable IC chips for power transfer and data transmission using ultrasound waves generated from commercial ultrasound imaging equipment.
    Type: Application
    Filed: March 5, 2018
    Publication date: July 12, 2018
    Applicant: The Trustees of Columbia University in the city of New York
    Inventors: Kenneth L. Shepard, Hongki Kang, Jordan Thimot, Chen Shi
  • Publication number: 20180185656
    Abstract: Systems and methods for providing neural stimulation and recording on a subject using flexible complementary CMOS probes are provided. Disclosed systems can include a flexible probe adapted for insertion into a portion of a brain of the subject, the flexible probe comprising a tail portion and a head portion. The tail portion can include a plurality of electrodes configured to be coupled to the brain and a plurality of front-end amplifiers. Each of the plurality of front-end amplifiers can be configured to amplify a signal received from a corresponding electrode of the plurality of electrodes. The head portion can include one or more inductors configured to enable two-way communication with a wireless reader through a near-field inductive link.
    Type: Application
    Filed: February 27, 2018
    Publication date: July 5, 2018
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Kenneth L. Shepard, David Tsai, Hongki Kang, Jordan Thimot
  • Publication number: 20180156746
    Abstract: A method for single-molecule detection is provided and uses a carbon nanotube having a probe entity attached thereto to define a first state of the carbon nanotube. The carbon nanotube is introduced to a target entity to define a second state of the carbon nanotube. The electrical conductance of the carbon nanotube in the first and second states is compared to detect the presence of a biomolecular entity. A system for single-molecule detection including a carbon nanotube is also provided.
    Type: Application
    Filed: December 28, 2017
    Publication date: June 7, 2018
    Applicant: The Trustees Of Columbia University In the City of New York
    Inventors: Sebastian Sorgenfrei, Kenneth L. Shepard, Chien-Yang Chiu, Colin Nuckolls, Steven Warren
  • Publication number: 20180122848
    Abstract: Single-photon avalanche diode includes a central junction having a central p+ area and a deep-n well in contact with the central p+ area, a p-type guard ring disposed between the central junction and the deep-n well, and a shallow trench isolation separated from the central p+ area. Imaging apparatus includes a plurality of pixels, each pixel comprising a complementary metal-oxide-semiconductor-implemented single photon avalanche device and one or more signal converters electrically coupled thereto and configured to detect changes in output therefrom.
    Type: Application
    Filed: October 23, 2017
    Publication date: May 3, 2018
    Applicant: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Kenneth L. Shepard, Ryan Michael Field