Patents by Inventor Kenneth Ray

Kenneth Ray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240093892
    Abstract: A refrigerant leak detection (RLD) and/or mitigation/containment (RLM/RLC) system/method for use in heating, ventilation, and air conditioning (HVAC) systems that incorporates a plurality of temperature and/or humidity sensors (THS), alarm status indicator (ASI), and digital control processor (DCP) is disclosed. The THS are positioned within the HVAC system (condenser coils (HCC), evaporator coils (HEC), air intake fans (AIF), air supply plenums (ASP), air return plenums (ARP), and/or temperature controlled environment (TCE)) and reports THS temperature readings to the DCP via a common temperature sensor bus (TSB) and/or a wireless temperature interface (WTI). The DCP interprets THS temperature readings in a closed control loop (CCL) to dynamically determine if a refrigerant leak has occurred within the HVAC system. If a leak is detected, the DCP activates the ASI and optionally one or more refrigerant control valves (RCV) is closed to limit refrigerant leakage in the HVAC system.
    Type: Application
    Filed: October 23, 2023
    Publication date: March 21, 2024
    Inventors: Kenneth Ray Green, Douglas Hiram Morse
  • Publication number: 20240095983
    Abstract: Various techniques facilitate the development of an image library that can be used to train and/or validate an automated visual inspection (AVI) model, such an AVI neural network for image classification. In one aspect, an arithmetic transposition algorithm is used to generate synthetic images from original images by transposing features (e.g., defects) onto the original images, with pixel-level realism. In other aspects, digital inpainting techniques are used to generate realistic synthetic images from original images. Deep learning-based inpainting techniques may be used to add, remove, and/or modify defects or other depicted features. In still other aspects, quality control techniques are used to assess the suitability of image libraries for training and/or validation of AVI models, and/or to assess whether individual images are suitable for inclusion in such libraries.
    Type: Application
    Filed: December 1, 2021
    Publication date: March 21, 2024
    Inventors: Al Patrick Goodwin, Joseph Peter Bernacki, Graham F. Milne, Thomas Clark Pearson, Aman Mahendra Jain, Jordan Ray Fine, Kenneth E. Hampshire, Aik Jun Tan, Osvaldo Perez Varela, Nishant Mukesh Gadhvi
  • Patent number: 11876582
    Abstract: Examples disclosed herein relate to a radar system for object identification. The radar system transmitting an azimuth fan beam and incrementing elevation of the beam. The radar system may include a transmit antenna and a receive antenna, each having a plurality of antenna elements arranged in rows and columns. The radar system may include a transceiver coupled to the transmit antenna and the receive antenna, the transceiver configured to control transmit beams having an azimuth fan beam, or an elevation fan beam. The radar system may include a processing unit. In various embodiments, the processing unit may include a digital processing unit; a range Doppler mapping module; and an azimuth detection module coupled to the transceiver. The azimuth detection module may be configured to process received signals and identify an azimuth angle of arrival by correlating signals received at antenna elements in rows of the receive antenna.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: January 16, 2024
    Assignee: Metawave Corporation
    Inventors: Abdullah Ahsan Zaidi, Kenneth Ray Carroll, Soren Shams, Maha Achour
  • Patent number: 11866621
    Abstract: The invention is an apparatus that allows individual adhesive strips to be easily and efficiently accessed by a medical professional. Specifically, the apparatus is defined by a series of adhesive strips that are offset and overlayed. Each adhesives strip includes a folded edge that allows a medical professional to grasp an individual adhesive strip, remove it from the adjacent strip, and use it for a particular application. When an additional adhesive strip is needed, the medical professional can repeat the process with the next (e.g., top) adhesive strip until all of the strips have been used.
    Type: Grant
    Filed: March 3, 2023
    Date of Patent: January 9, 2024
    Inventor: Kenneth Ray Henderson
  • Patent number: 11841175
    Abstract: A refrigerant metering system/method incorporating a manual expansion valve (MEV), condenser isolation valve (CIV), flow isolation valve (FIV), and evaporator isolation valve (EIV) is disclosed. The MEV is configured to replace a conventional automated expansion valve (AEV) that controls a refrigerant flow valve (RFV) that is positioned in a heating, ventilation, and air conditioning (HVAC) system between a refrigerant condenser coil (RCC) and a refrigerant evaporator coil (REC) and permits manual metering of refrigerant by the RFV from the RCC to the REC and also allows complete shutoff of refrigerant flow by the RFV from the RCC to the REC. The MEV allows rapid HVAC repair and restoration of service where a replacement AEV is not readily available. The CIV/FIV/EIV are positioned in the refrigerant flow lines to permit the AEV and/or REC to be isolated from HVAC refrigerant flow for repairs to the AEV and/or REC.
    Type: Grant
    Filed: August 24, 2022
    Date of Patent: December 12, 2023
    Inventor: Kenneth Ray Green
  • Patent number: 11808497
    Abstract: A refrigerant metering system/method incorporating a manual expansion valve (MEV), condenser isolation valve (CIV), flow isolation valve (FIV), and evaporator isolation valve (EIV) is disclosed. The MEV is configured to replace a conventional automated expansion valve (AEV) that controls a refrigerant flow valve (RFV) that is positioned in a heating, ventilation, and air conditioning (HVAC) system between a refrigerant condenser coil (RCC) and a refrigerant evaporator coil (REC) and permits manual metering of refrigerant by the RFV from the RCC to the REC and also allows complete shutoff of refrigerant flow by the RFV from the RCC to the REC. The MEV allows rapid HVAC repair and restoration of service where a replacement AEV is not readily available. The CIV/FIV/EIV are positioned in the refrigerant flow lines to permit the AEV and/or REC to be isolated from HVAC refrigerant flow for repairs to the AEV and/or REC.
    Type: Grant
    Filed: August 24, 2022
    Date of Patent: November 7, 2023
    Inventor: Kenneth Ray Green
  • Patent number: 11804082
    Abstract: Methods and apparatus are provided for diagnosing a vehicle. In one embodiment, a method includes: initiating, by a processor, a recording of a noise by at least one microphone based on user selection data from a user of the vehicle; receiving, by the processor, audio signal data based on the recording; generating, by the processor, vector data based on the audio signal data; processing, by the processor, the vector data with at least one trained machine, by the processor, learning model to determine a classification of the noise; predicting, by the processor, an action to be taken based on the classification; and storing, by the processor, the audio signal data, the classification, and the action in a datastore.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: October 31, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Gaurav Talwar, Kenneth Ray Booker, William L. Villaire, Jeffery J. Milton, Mathew Anthony Clifford Keith Jones
  • Patent number: 11624535
    Abstract: A refrigerant metering system/method incorporating a manual expansion valve (MEV), condenser isolation valve (CIV), flow isolation valve (FIV), and evaporator isolation valve (EIV) is disclosed. The MEV is configured to replace a conventional automated expansion valve (AEV) that controls a refrigerant flow valve (RFV) that is positioned in a heating, ventilation, and air conditioning (HVAC) system between a refrigerant condenser coil (RCC) and a refrigerant evaporator coil (REC) and permits manual metering of refrigerant by the RFV from the RCC to the REC and also allows complete shutoff of refrigerant flow by the RFV from the RCC to the REC. The MEV allows rapid HVAC repair and restoration of service where a replacement AEV is not readily available. The CIV/FIV/EIV are positioned in the refrigerant flow lines to permit the AEV and/or REC to be isolated from HVAC refrigerant flow for repairs to the AEV and/or REC.
    Type: Grant
    Filed: August 24, 2022
    Date of Patent: April 11, 2023
    Inventor: Kenneth Ray Green
  • Publication number: 20230088978
    Abstract: The invention provides a component formed of an aluminum alloy for use in a vehicle, for example an automotive vehicle component requiring high strength, light-weight, and a complex three-dimensional shape, and a method of manufacturing the component. The method begins by providing a blank formed of an aluminum alloy which is already solution heat treated and tempered, and thus has a temper designation of about T4. The method further includes heating the blank to a temperature of 150° C. to 350° C., preferably 190° C. to 225° C. The method next includes quickly transferring the blank to a hot or warm forming apparatus, and stamping the blank to form the complex three-dimensional shape. Immediately after the forming step, the component has a temper designation of about T6, but preferably not greater than T6, and thus is ready for use in the vehicle without any post heat treatment or machining.
    Type: Application
    Filed: November 28, 2022
    Publication date: March 23, 2023
    Inventors: Edward K. STEINEBACH, Mark Justin JONES, Jeremiah John BRADY, Kenneth Ray ADAMS, Gerard M. LUDTKA
  • Patent number: 11585528
    Abstract: A burner assembly having a blower housing, a blower to supply air to the burner assembly, a blast tube having a longitudinal axis, a fuel source to supply fuel to the burner assembly, a center tube that is substantially parallel to the longitudinal axis and conveys air and fuel to a center tube burner end opening, a plurality of premix tubes, each of which is substantially parallel to the longitudinal axis and conveys air and fuel to a premix tube burner end opening, a diffuser that is disposed in the center tube near the center tube burner end opening, a nozzle that is disposed in the center tube substantially perpendicular to the diffuser. The center tube air and fuel mixture is fuel rich and the premix tubes air and fuel mixture is fuel lean. A method for burning the center tube air and fuel mixture and the premix tubes mixtures.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: February 21, 2023
    Assignee: Power Flame Incorporated
    Inventors: Kenneth Ray George, Michael Joseph Purdon, Michael Ryan Martinie
  • Publication number: 20220412615
    Abstract: A refrigerant metering system/method incorporating a manual expansion valve (MEV), condenser isolation valve (CIV), flow isolation valve (FIV), and evaporator isolation valve (EIV) is disclosed. The MEV is configured to replace a conventional automated expansion valve (AEV) that controls a refrigerant flow valve (RFV) that is positioned in a heating, ventilation, and air conditioning (HVAC) system between a refrigerant condenser coil (RCC) and a refrigerant evaporator coil (REC) and permits manual metering of refrigerant by the RFV from the RCC to the REC and also allows complete shutoff of refrigerant flow by the RFV from the RCC to the REC. The MEV allows rapid HVAC repair and restoration of service where a replacement AEV is not readily available. The CIV/FIV/EIV are positioned in the refrigerant flow lines to permit the AEV and/or REC to be isolated from HVAC refrigerant flow for repairs to the AEV and/or REC.
    Type: Application
    Filed: August 24, 2022
    Publication date: December 29, 2022
    Inventor: Kenneth Ray Green
  • Publication number: 20220412614
    Abstract: A refrigerant metering system/method incorporating a manual expansion valve (MEV), condenser isolation valve (CIV), flow isolation valve (FIV), and evaporator isolation valve (EIV) is disclosed. The MEV is configured to replace a conventional automated expansion valve (AEV) that controls a refrigerant flow valve (RFV) that is positioned in a heating, ventilation, and air conditioning (HVAC) system between a refrigerant condenser coil (RCC) and a refrigerant evaporator coil (REC) and permits manual metering of refrigerant by the RFV from the RCC to the REC and also allows complete shutoff of refrigerant flow by the RFV from the RCC to the REC. The MEV allows rapid HVAC repair and restoration of service where a replacement AEV is not readily available. The CIV/FIV/EIV are positioned in the refrigerant flow lines to permit the AEV and/or REC to be isolated from HVAC refrigerant flow for repairs to the AEV and/or REC.
    Type: Application
    Filed: August 24, 2022
    Publication date: December 29, 2022
    Inventor: Kenneth Ray Green
  • Publication number: 20220404074
    Abstract: A refrigerant metering system/method incorporating a manual expansion valve (MEV), condenser isolation valve (CIV), flow isolation valve (FIV), and evaporator isolation valve (EIV) is disclosed. The MEV is configured to replace a conventional automated expansion valve (AEV) that controls a refrigerant flow valve (RFV) that is positioned in a heating, ventilation, and air conditioning (HVAC) system between a refrigerant condenser coil (RCC) and a refrigerant evaporator coil (REC) and permits manual metering of refrigerant by the RFV from the RCC to the REC and also allows complete shutoff of refrigerant flow by the RFV from the RCC to the REC. The MEV allows rapid HVAC repair and restoration of service where a replacement AEV is not readily available. The CIV/FIV/EIV are positioned in the refrigerant flow lines to permit the AEV and/or REC to be isolated from HVAC refrigerant flow for repairs to the AEV and/or REC.
    Type: Application
    Filed: August 24, 2022
    Publication date: December 22, 2022
    Inventor: Kenneth Ray Green
  • Publication number: 20220406106
    Abstract: Methods and apparatus are provided for diagnosing a vehicle. In one embodiment, a method includes: initiating, by a processor, a recording of a noise by at least one microphone based on user selection data from a user of the vehicle; receiving, by the processor, audio signal data based on the recording; generating, by the processor, vector data based on the audio signal data; processing, by the processor, the vector data with at least one trained machine, by the processor, learning model to determine a classification of the noise; predicting, by the processor, an action to be taken based on the classification; and storing, by the processor, the audio signal data, the classification, and the action in a datastore.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 22, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Gaurav Talwar, Kenneth Ray Booker, William L. Villaire, Jeffery J. Milton, Mathew Anthony Clifford Keith Jones
  • Publication number: 20220373643
    Abstract: Two-dimensional DOA estimation is challenging as the computational and hardware complexity could scale as the square as compared to that of one-dimensional problem. The proposed scheme relies on designing antenna locations and also involves a mix of subarray and digital beamforming to lower the overall system performance and cost by reducing the costly transceiver chains. This framework proposes a two-step solution which first isolates a target to a given range doppler bin and elevation angle by linear receive subarray in the elevation direction. However, the elevation estimate is relatively coarse which is further refined along with a high-resolution estimate of azimuth angle. This is achieved by processing the received data from a 2D sparse antenna array, which are systematically chosen to maximize the resolution in both directions. The compressive sensing algorithm is applied to the 2D sparse received array data which exploits the sparse representation of the underlying signal support.
    Type: Application
    Filed: May 6, 2022
    Publication date: November 24, 2022
    Inventors: Syed Ali HAMZA, Kenneth Ray CARROLL
  • Publication number: 20220363564
    Abstract: Embodiments of the invention provide a method, system and computer program product for automated sampling, testing and treating large water basins. In an embodiment of the invention, the method includes storing a plurality of locations of a water basin, where each location includes at least one chemical delivery outlet. The method further includes monitoring water quality for each of the plurality of locations and mapping a water quality value to each of the locations. The method even further includes responsive to the water quality value failing to meet a threshold value in one of the locations, automatically determining an amount of chemical based on the water quality value and delivering the amount of chemical only to the one of the locations through its corresponding chemical delivery outlet.
    Type: Application
    Filed: May 11, 2022
    Publication date: November 17, 2022
    Inventors: Joshua Matthew Martin, Kenneth Ray Martin
  • Patent number: 11428448
    Abstract: A refrigerant metering system/method incorporating a manual expansion valve (MEV), condenser isolation valve (CIV), flow isolation valve (FIV), and evaporator isolation valve (EIV) is disclosed. The MEV is configured to replace a conventional automated expansion valve (AEV) that controls a refrigerant flow valve (RFV) that is positioned in a heating, ventilation, and air conditioning (HVAC) system between a refrigerant condenser coil (RCC) and a refrigerant evaporator coil (REC) and permits manual metering of refrigerant by the RFV from the RCC to the REC and also allows complete shutoff of refrigerant flow by the RFV from the RCC to the REC. The MEV allows rapid HVAC repair and restoration of service where a replacement AEV is not readily available. The CIV/FIV/EIV are positioned in the refrigerant flow lines to permit the AEV and/or REC to be isolated from HVAC refrigerant flow for repairs to the AEV and/or REC.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: August 30, 2022
    Inventor: Kenneth Ray Green
  • Publication number: 20220268468
    Abstract: A refrigerant leak detection and mitigation system/method for use in heating, ventilation, and air conditioning (HVAC) systems that incorporates a refrigerant gas sensor (RGS), sensor signal conditioner (SSC), alarm status indicator (ASI), and digital control processor (DCP) is disclosed. The RGS detects ambient refrigerant gas (ARG) and indicates this as a refrigerant sensor voltage (RSV) to the SSC. The DCP and SSC form a closed control loop (CCL) in which the SSC electrical characteristics are adjusted by the DCP such that the RSV is continuously and dynamically recalibrated to account for background refrigerant gas levels, changes in ambient air conditions, RGS manufacturing tolerances, and other field-specific operational conditions that impact the RGS detection capabilities. The DCP is configured to log alarms to the ASI if a RGS refrigerant leak is detected and optionally shutdown one or more HVAC system components such as a specific air handler leaking refrigerant.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 25, 2022
    Inventors: Kenneth Ray Green, Douglas Hiram Morse
  • Publication number: 20220263483
    Abstract: A cryogenic parametric amplifier control apparatus is disclosed. Methods of implementation and devices incorporated within the whole of the apparatus are disclosed. Methods of reducing the number of signal lines necessary to control a parametric amplifier are disclosed. Schema allowing for control of multiple parametric amplifiers with a single apparatus are disclosed.
    Type: Application
    Filed: July 6, 2020
    Publication date: August 18, 2022
    Inventors: Christopher Tze-Chao Koh, Kenneth Ray Wood
  • Publication number: 20220252304
    Abstract: A failsafe hydrocarbon-based gas (HBG) leak detection (HLD) and mitigation (HLM) system/method for use in heating, ventilation, and air conditioning (HVAC) systems that incorporates a hydrocarbon gas sensor (HGS), sensor signal conditioner (SSC), alarm status indicator (ASI), and digital control processor (DCP) is disclosed. The HGS detects ambient hydrocarbon gas (AHG) and presents a hydrocarbon sensor voltage (HSV) to the SSC. The DCP and SSC form a closed control loop (CCL) in which the SSC electrical characteristics are adjusted by the DCP such that the HSV is continuously and dynamically recalibrated to account for background HBG levels, changes in ambient air conditions, HGS manufacturing tolerances, and other field-specific operational conditions that impact the HGS detection capabilities. The DCP is configured to log alarms to the ASI if a HGS HBG leak is detected and optionally shutdown gas flow to one or more HBG target (HBT) system components.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 11, 2022
    Inventor: Kenneth Ray Green