Patents by Inventor Kenneth S. Collins

Kenneth S. Collins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120199071
    Abstract: Embodiments described herein relate to a plasma chamber and processing system utilizing robust components. In one embodiment, a chamber is provided. The chamber includes a body having an interior volume, a gas distribution assembly disposed in the interior volume opposing a substrate support, the gas distribution assembly having a coolant channel disposed thereon, and a first hollow conduit and a second hollow conduit coupled to the body and in fluid communication with the interior volume.
    Type: Application
    Filed: April 13, 2012
    Publication date: August 9, 2012
    Applicant: Applied Materials, Inc.
    Inventors: KENNETH S. COLLINS, Andrew N. Nguyen, Kartik Ramaswamy, Hiroji Hanawa, Douglas A. Buchberger, JR., Daniel J. Hoffman, Amir Al-Bayati
  • Publication number: 20120125488
    Abstract: A method of creating a plasma-resistant thermal oxide coating on a surface of an article, where the article is comprised of a metal or metal alloy which is typically selected from the group consisting of yttrium, neodymium, samarium, terbium, dysprosium, erbium, ytterbium, scandium, hafnium, niobium or combinations thereof. The oxide coating is formed using a time-temperature profile which includes an initial rapid heating rage, followed by a gradual decrease in heating rate, to produce an oxide coating structure which is columnar in nature. The grain size of the crystals which make up the oxide coating is larger at the surface of the oxide coating than at the interface between the oxide coating and the metal or metal alloy substrate, and the oxide coating is in compression at the interface between the oxide coating and the metal or metal alloy substrate.
    Type: Application
    Filed: January 25, 2012
    Publication date: May 24, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Li Xu, Kenneth S. Collins, Thomas Graves, Ren-Guan Duan, Senh Thach
  • Publication number: 20120069174
    Abstract: Embodiments of the present invention provide methods and apparatus for analyzing thermal properties of bonding materials within a composite structure. One embodiment of the present invention provides an apparatus for analyzing thermal property of a bonding material within a structure. The apparatus comprises a structure support having a supporting surface configured to support the structure, a heat source configured to direct a heat flux to the structure supported by the supporting surface of the structure support, and a camera facing the structure supported on the structure support and configured to capture thermal images of the structure supported on the structure support.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 22, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Zheng John Ye, Kartik Ramaswamy, Troy S. Detrick, Kenneth S. Collins
  • Patent number: 8129029
    Abstract: An article which is resistant to corrosion or erosion by chemically active plasmas and a method of making the article are described. The article is comprised of a metal or metal alloy substrate having on its surface a coating which is an oxide of the metal or metal alloy. The structure of the oxide coating is columnar in nature. The grain size of the crystals which make up the oxide is larger at the surface of the oxide coating than at the interface between the oxide coating and the metal or metal alloy substrate, and wherein the oxide coating is in compression at the interface between the oxide coating and the metal or metal alloy substrate. Typically the metal is selected from the group consisting of yttrium, neodymium, samarium, terbium, dysprosium, erbium, ytterbium, scandium, hafnium, niobium or combinations thereof.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: March 6, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Li Xu, Kenneth S. Collins, Thomas Graves, Ren-Guan Duan, Senh Thach
  • Publication number: 20120043023
    Abstract: The disclosure pertains to a capactively coupled plasma source in which VHF power is applied through an impedance-matching coaxial resonator having a folded structure and symmetrical power distribution.
    Type: Application
    Filed: March 14, 2011
    Publication date: February 23, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Igor Markovsky, Zhigang Chen, James D. Carducci, Kenneth S. Collins, Shahid Rauf, Nipun Misra, Leonid Dorf, Zheng John Ye
  • Publication number: 20120034136
    Abstract: A coaxial VHF power coupler includes conductive element inside a hollow cylindrical outer conductor of the power coupler and surrounding an axial section of a hollow cylindrical inner conductor of the power coupler. Respective plural motor drives contacting the hollow cylindrical outer conductor are connected to respective locations of the movable conductive element.
    Type: Application
    Filed: March 17, 2011
    Publication date: February 9, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Zhigang Chen, Kartik Ramaswamy, James D. Carducci, Shahid Rauf, Andrew Nguyen
  • Publication number: 20120034469
    Abstract: A ceramic article useful in semiconductor processing, which is resistant to erosion by halogen-containing plasmas. The ceramic article is formed from a combination of yttrium oxide and zirconium oxide. In a first embodiment, the ceramic article includes ceramic which is formed from yttrium oxide at a molar concentration ranging from about 90 mole % to about 70 mole %, and zirconium oxide at a molar concentration ranging from about 10 mole % to about 30 mole %. In a second embodiment, the ceramic article includes ceramic which is formed from zirconium oxide at a molar concentration ranging from about 96 mole % to about 94 mole %, and yttrium oxide at a molar concentration ranging from about 4 mole % to about 6 mole %.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 9, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Ren-Guan Duan, Jie Yuan, Li Xu, Kenneth S. Collins
  • Publication number: 20120018402
    Abstract: The invention discloses a plasma processing apparatus comprising a chamber lid, a chamber body and a support assembly. The chamber body, defining a processing volume for containing a plasma, for supporting the chamber lid. The chamber body is comprised of a chamber sidewall, a bottom wall and a liner assembly. The chamber sidewall and the bottom wall define a processing volume for containing a plasma. The liner assembly, disposed inside the processing volume, comprises of two or more slots formed thereon for providing an axial symmetric RF current path. The support assembly supports a substrate for processing within the chamber body. With the liner assembly with several symmetric slots, the present invention can prevent electromagnetic fields thereof from being azimuthal asymmetry.
    Type: Application
    Filed: July 17, 2011
    Publication date: January 26, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: James D. Carducci, Zhigang Chen, Shahid Rauf, Kenneth S. Collins
  • Patent number: 8080479
    Abstract: A method of processing a workpiece in a plasma reactor chamber includes coupling RF power via an electrode to plasma in the chamber, the RF power being of a variable frequency in a frequency range that includes a fundamental frequency f. The method also includes coupling the electrode to a resonator having a resonant VHF frequency F which is a harmonic of the fundamental frequency f, so as to produce VHF power at the harmonic. The method controls the ratio of power near the fundamental f to power at harmonic F, by controlling the proportion of power from the generator that is up-converted from f to F, so as to control plasma ion density distribution.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: December 20, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Hiroji Hanawa, Kartik Ramaswamy, Douglas A. Buchberger, Jr., Shahid Rauf, Kallol Bera, Lawrence Wong, Walter R. Merry, Matthew L. Miller, Steven C. Shannon, Andrew Nguyen, James P. Cruse, James Carducci, Troy S. Detrick, Subhash Deshmukh, Jennifer Y. Sun
  • Patent number: 8076247
    Abstract: A method is provided for processing a workpiece in a plasma reactor chamber. The method includes coupling, to a plasma in the chamber, power of an RF frequency via a ceiling electrode and coupling, to the plasma, power of at least approximately the same RF frequency via a workpiece support electrode. The method also includes providing an edge ground return path. The method further includes adjusting the proportion between (a) current flow between said electrodes and (b) current flow to the edge ground return path from said electrodes, to control plasma ion density distribution uniformity over the workpiece.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: December 13, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Hiroji Hanawa, Kartik Ramaswamy, Douglas A. Buchberger, Jr., Shahid Rauf, Kallol Bera, Lawrence Wong, Walter R. Merry, Matthew L. Miller, Steven C. Shannon, Andrew Nguyen, James P. Cruse, James Carducci, Troy S. Detrick, Subhash Deshmukh, Jennifer Y. Sun
  • Patent number: 8058156
    Abstract: A plasma immersion ion implantation process for implanting a selected species at a desired ion implantation depth profile in a workpiece is carried out in a reactor chamber having a set of plural parallel ion shower grids that divide the chamber into an upper ion generation region and a lower process region, each of the ion shower grids having plural orifices in mutual registration from grid to grid, the plural orifices oriented in a non-parallel direction relative to a surface plane of the respective ion shower grid. The process includes placing a workpiece in the process region, the workpiece having a workpiece surface generally facing the surface plane of the closest one of the plural ion shower grids, and furnishing the selected species into the ion generation region. The process further includes evacuating the process region, and applying plasma source power to generate a plasma of the selected species in the ion generation region.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: November 15, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Hiroji Hanawa, Tsutomu Tanaka, Kenneth S. Collins, Amir Al-Bayati, Kartik Ramaswamy, Andrew Nguyen
  • Publication number: 20110266256
    Abstract: Methods for processing substrates in twin chamber processing systems having first and second process chambers and shared processing resources are provided herein. In some embodiments, a method may include providing a substrate to the first process chamber of the twin chamber processing system, wherein the first process chamber has a first processing volume that is independent from a second processing volume of the second process chamber; providing one or more processing resources from the shared processing resources to only the first processing volume of the first process chamber; and performing a process on the substrate in the first process chamber.
    Type: Application
    Filed: October 29, 2010
    Publication date: November 3, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: James P. Cruse, Dermot Cantwell, Ming Xu, Charles Hardy, Benjamin Schwarz, Kenneth S. Collins, Andrew Nguyen, Zhifeng Sui, Evans Lee
  • Publication number: 20110265814
    Abstract: Methods for processing substrates in twin chamber processing systems having first and second process chambers and shared processing resources are provided herein. In some embodiments, a method may include flowing a process gas from a shared gas panel to a processing volume of the first process chamber and to a processing volume of the second process chamber; forming a first plasma in the first processing volume to process the first substrate and a second plasma to process the second substrate; monitoring the first processing volume and the second processing volume to determine if a process endpoint is reached in either volume; and either terminating the first and second plasma simultaneously when a first endpoint is reached; or terminating the first plasma when a first endpoint is reached in the first processing volume while continuing to provide the second plasma in the second processing volume until a second endpoint is reached.
    Type: Application
    Filed: October 29, 2010
    Publication date: November 3, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: JAMES P. CRUSE, DERMOT CANTWELL, MING XU, CHARLES HARDY, BENJAMIN SCHWARZ, KENNETH S. COLLINS, ANDREW NGUYEN, ZHIFENG SUI, EVANS LEE
  • Publication number: 20110256691
    Abstract: A method and apparatus for removing excess dopant from a doped substrate is provided. In one embodiment, a substrate is doped by surfaced deposition of dopant followed by formation of a capping layer and thermal diffusion drive-in. A reactive etchant mixture is provided to the process chamber, with optional plasma, to etch away the capping layer and form volatile compounds by reacting with excess dopant. In another embodiment, a substrate is doped by energetic implantation of dopant. A reactive gas mixture is provided to the process chamber, with optional plasma, to remove excess dopant adsorbed on the surface and high-concentration dopant near the surface by reacting with the dopant to form volatile compounds. The reactive gas mixture may be provided during thermal treatment, or it may be provided before or after at temperatures different from the thermal treatment temperature. The volatile compounds are removed.
    Type: Application
    Filed: June 24, 2011
    Publication date: October 20, 2011
    Inventors: Kartik Ramaswamy, Kenneth S. Collins, Biagio Gallo, Hiroji Hanawa, Majeed A. Foad, Martin A. Hilkene, Kartik Santhanam, Matthew D. Scotney-Castle
  • Patent number: 8034734
    Abstract: A solid solution-comprising ceramic article useful in semiconductor processing, which is resistant to erosion by halogen-containing plasmas. The solid solution-comprising ceramic article is formed from a combination of yttrium oxide and zirconium oxide. In a first embodiment, the ceramic article includes ceramic which is formed from yttrium oxide at a molar concentration ranging from about 90 mole % to about 70 mole %, and zirconium oxide at a molar concentration ranging from about 10 mole % to about 30 mole %. In a second embodiment, the ceramic article includes ceramic which is formed from zirconium oxide at a molar concentration ranging from about 96 mole % to about 94 mole %, and yttrium oxide at a molar concentration ranging from about 4 mole % to about 6 mole %.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: October 11, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Ren-Guan Duan, Jie Yuan, Li Xu, Kenneth S. Collins
  • Patent number: 8018164
    Abstract: Fluctuations in a plasma characteristic such as load impedance are compensated by a controller that modulates a stabilization RF generator coupled to the plasma having a frequency suitable for stabilizing the plasma characteristic, the controller being responsive to the fluctuations in the plasma characteristic.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: September 13, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, Kartik Ramaswamy, Daniel J. Hoffman, Matthew L. Miller, Kenneth S. Collins
  • Patent number: 8002945
    Abstract: A method is provided in plasma processing of a workpiece for stabilizing the plasma against engineered transients in applied RF power, by modulating an unmatched low power RF generator in synchronism with the transient.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: August 23, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, Kartik Ramaswamy, Daniel J. Hoffman, Matthew L. Miller, Kenneth S. Collins
  • Patent number: 7988815
    Abstract: RF ground return current flow is diverted away from asymmetrical features of the reactor chamber by providing bypass current flow paths. One bypass current flow path avoids the pumping port in the chamber floor, and comprises a conductive symmetrical grill extending from the side wall to the grounded pedestal base. Another bypass current flow path avoids the wafer slit valve, and comprises an array of conductive straps bridging the section of the sidewall occupied by the slit valve.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: August 2, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Shahid Rauf, Kenneth S. Collins, Kallol Bera, Kartik Ramaswamy, Hiroji Hanawa, Andrew Nguyen, Steven C. Shannon, Lawrence Wong, Satoru Kobayashi, Troy S. Detrick, James P. Cruse
  • Patent number: 7989329
    Abstract: A method and apparatus for removing excess dopant from a doped substrate is provided. In one embodiment, a substrate is doped by surfaced deposition of dopant followed by formation of a capping layer and thermal diffusion drive-in. A reactive etchant mixture is provided to the process chamber, with optional plasma, to etch away the capping layer and form volatile compounds by reacting with excess dopant. In another embodiment, a substrate is doped by energetic implantation of dopant. A reactive gas mixture is provided to the process chamber, with optional plasma, to remove excess dopant adsorbed on the surface and high-concentration dopant near the surface by reacting with the dopant to form volatile compounds. The reactive gas mixture may be provided during thermal treatment, or it may be provided before or after at temperatures different from the thermal treatment temperature. The volatile compounds are removed.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: August 2, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Kenneth S. Collins, Biagio Gallo, Hiroji Hanawa, Majeed A. Foad, Martin A. Hilkene, Kartik Santhanam, Matthew D. Scotney-Castle
  • Patent number: 7972469
    Abstract: Embodiments of the present invention relate to plasma processing apparatus and methods of use thereof. In some embodiments, a plasma control magnet assembly includes a plurality of magnets arranged in a predetermined pattern that generate a magnetic field having a strength greater than 10 Gauss in a region proximate the assembly and less than 10 Gauss in a region remote from the assembly.
    Type: Grant
    Filed: April 22, 2007
    Date of Patent: July 5, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Hiroji Hanawa, Andrew Nguyen, Keiji Horioka, Kallol Bera, Kenneth S. Collins, Lawrence Wong, Martin Jeff Salinas, Roger A. Lindley, Hong S. Yang