Patents by Inventor Kenneth W. Fernald

Kenneth W. Fernald has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7962773
    Abstract: A microcontroller unit (MCU) is disclosed with a stand-alone Real Time Clock (RTC). The MCU includes a processing circuit for receiving digital information and processing said received digital information. A primary clock circuit provides the timing for the processing circuit. A power control circuit controls the power to the processing circuit and the primary clock circuit to control the operation thereof to operate in at least a full power mode drawing a full power level from a supply voltage input and a reduced power mode drawing less than the full power level from the supply voltage input. A stand-alone RTC circuit is also provided, the stand-alone RTC circuit including an RTC clock circuit operating independent of the primary clock circuit. A timer clocked by the RTC clock circuit is operable to increment a stored time value for output therefrom, the RTC clock circuit having a defined time base. An input/output (I/O) device provides access by the processing circuit to the results output by the timer.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: June 14, 2011
    Assignee: Silicon Laboratories, Inc.
    Inventors: Kenneth W. Fernald, Donald E. Alfano
  • Patent number: 7908402
    Abstract: A power management system may comprise two or more POL regulators configured to transmit and receive data over a shared bus according to either a proprietary or a common bus protocol. Each POL regulator may be identified by a unique address that is part of an address group, and may be configured via pin strapping to be able to perform a variety of power management functions. Any one of the POL regulators within the address group may become a bus master and transmit information to the shared bus by addressing itself. The other POL regulators in the address group may monitor the shared bus for events, and may respond to the transmitted information according to their address, their configuration, and the transmitted information. The response may include the POL regulators performing one or more power management functions, including adjusting their respective output voltages.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: March 15, 2011
    Assignee: Zilker Labs, Inc.
    Inventors: Kenneth W. Fernald, James W. Templeton, John A. Wishneusky
  • Publication number: 20100325325
    Abstract: A power management system may comprise two or more POL regulators configured to transmit and receive data over a shared bus according to either a proprietary or a common bus protocol. Each POL regulator may be identified by a unique address that is part of an address group, and may be configured via pin strapping to be able to perform a variety of power management functions. Any one of the POL regulators within the address group may become a bus master and transmit information to the shared bus by addressing itself The other POL regulators in the address group may monitor the shared bus for events, and may respond to the transmitted information according to their address, their configuration, and the transmitted information. The response may include the POL regulators performing one or more power management functions, including adjusting their respective output voltages.
    Type: Application
    Filed: August 26, 2010
    Publication date: December 23, 2010
    Inventors: Kenneth W. Fernald, James W. Templeton, John A. Wishneusky
  • Patent number: 7793005
    Abstract: A power management system may comprise two or more POL regulators configured to transmit and receive data over a shared bus according to either a proprietary or a common bus protocol. Each POL regulator may be identified by a unique address that is part of an address group, and may be configured via pin strapping to be able to perform a variety of power management functions. Any one of the POL regulators within the address group may become a bus master and transmit information to the shared bus by addressing itself. The other POL regulators in the address group may monitor the shared bus for events, and may respond to the transmitted information according to their address, their configuration, and the transmitted information. The response may include the POL regulators performing one or more power management functions, including adjusting their respective output voltages.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: September 7, 2010
    Assignee: Zilker Labs, Inc.
    Inventors: Kenneth W. Fernald, James W. Templeton, John A. Wishneusky
  • Publication number: 20100213914
    Abstract: Rather than operating in asynchronous mode during turn-on ramps, a switching power regulator system may be configured to synthesize a digital waveform, which may protect against a pre-bias condition and maintain the desired ramp-up time and rate. The desired turn-on ramp may be generated digitally by counter logic, beginning with an initial value and incrementing at a programmed rate until a digital value equivalent to the desired output voltage is reached. When a pre-bias condition is not present, the output of the digital ramp generator may control a digital-to-analog converter (DAC), which may be configured to generate the reference voltage for the power regulator. To correct for a pre-bias condition, the pre-bias output of the power regulator may be measured prior to turn-on, using an analog-to-digital converter. The digital pre-bias value may be used to control the DAC until the value of the digital waveform generated by the ramp generator reaches the pre-bias value.
    Type: Application
    Filed: May 4, 2010
    Publication date: August 26, 2010
    Inventor: Kenneth W. Fernald
  • Patent number: 7723970
    Abstract: Rather than operating in asynchronous mode during turn-on ramps, a switching power regulator system may be configured to synthesize a digital waveform, which may protect against a pre-bias condition and maintain the desired ramp-up time and rate. The desired turn-on ramp may be generated digitally by counter logic, beginning with an initial value and incrementing at a programmed rate until a digital value equivalent to the desired output voltage is reached. When a pre-bias condition is not present, the output of the digital ramp generator may control a digital-to-analog converter (DAC), which may be configured to generate the reference voltage for the power regulator. To correct for a pre-bias condition, the pre-bias output of the power regulator may be measured prior to turn-on, using an analog-to-digital converter. The digital pre-bias value may be used to control the DAC until the value of the digital waveform generated by the ramp generator reaches the pre-bias value.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: May 25, 2010
    Assignee: Zilker Labs, Inc.
    Inventor: Kenneth W. Fernald
  • Patent number: 7668607
    Abstract: The control precision of one or more parameters of an integrated circuit (IC), for example the output voltage of a voltage regulator comprised in the IC, may be improved even when using inaccurate components external to the IC. Control of the output voltage, or any parameter, using components external to the IC may include coupling a resistor to the IC and measuring the actual resistance value of the resistor, and based on the measured value, selecting a nominal resistance value from a set of resistance values previously specified by the user. The output voltage, or parameter, may be generated according to the nominal resistance value instead of the actual resistance value, thereby reducing the error that may be incurred due the actual resistance value of the resistor not matching the expected nominal value of the resistor.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: February 23, 2010
    Assignee: Zilker Labs, Inc.
    Inventor: Kenneth W. Fernald
  • Patent number: 7660968
    Abstract: A reconfigurable processor includes a processor core for operating on a set of instructions to carry out predefined processes and includes a plurality of input/output pins in addition to a plurality of functional input/output blocks. These functional blocks allow the processing core to interface with the plurality of input/output pins, each of the functional input/output blocks having an associated and predetermined functionality. This functionality comprises the output as a function of the input, the function defined by the functionality. Each of the functional input/output blocks has a requirement for a defined number of the plurality of input/output pins wherein the total of the defined number for all of the plurality of functional input/output blocks exceeds the number of the plurality of input/output pins and wherein the processor core is interfaced with one of the input or output of each of the functional blocks.
    Type: Grant
    Filed: June 30, 2007
    Date of Patent: February 9, 2010
    Inventors: Donald E. Alfano, Danny J. Allred, Douglas S. Piasecki, Kenneth W. Fernald, Ka Y. Leung, Brian Caloway, Alan Storvik, Paul Highley, Douglas R. Holberg
  • Patent number: 7653757
    Abstract: In one set of embodiments, a power management system comprises two or more devices, such as POL devices, configured to transmit and receive data over a shared bus, such as an I2C bus, according to the bus protocol of the shared bus. Each device may be configured with at least one respective address register, which may be programmed with an address uniquely identifying the device, and a mask register that may be configured to mask select bits of the respective address register, thereby enabling the device to identify device groups. In one embodiment, one of the devices identifying itself as a master device may distribute information to any of the other devices by transmitting the information, which may include commands and/or data, to itself, in effect targeting the address programmed into its own address register.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: January 26, 2010
    Assignee: Zilker Labs, Inc.
    Inventors: Kenneth W. Fernald, James W. Templeton, John A. Wishneusky
  • Publication number: 20100013307
    Abstract: Point-of-load (POL) regulators may be configured as multiphase POL DC-to-DC (direct current to direct current) converters, operating in a multiphase configuration in order to boost the total current available to a system. Current balancing may be performed by utilizing an active low bandwidth current sharing algorithm that uses matched artificial line resistance (droop resistance) while maintaining multi-loop stability during both steady-state and dynamic transient states. The current sharing algorithm may be facilitated through digital communication between the devices, where the digital bus may be a single wire bus, a parallel bus or a clock-and-data bus.
    Type: Application
    Filed: July 19, 2009
    Publication date: January 21, 2010
    Inventors: Douglas E. Heineman, Kenneth W. Fernald
  • Patent number: 7613901
    Abstract: An integrated circuit package includes a processing core for operating on a set of instructions to carry out predefined processes. A plurality of comparators perform compare operations within the integrated circuit package. At least one control register is associated with each of the plurality of comparators, and each of the plurality of comparators are software programmable to control a hysteresis of the comparators responsive to control bits established in the at least one control register of the comparator by the processing core. An amount of positive hysteresis is programmed via a first group of the control bits and an amount of negative hysteresis is programmed via a second group of the control bits.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: November 3, 2009
    Assignee: Silicon Labs CP, Inc.
    Inventors: Donald E. Alfano, Danny J. Allred, Douglas S. Piasecki, Kenneth W. Fernald, Ka Y. Leung, Brian Caloway, Alvin Storvik, Paul Highley, Douglas R. Holberg
  • Patent number: 7589514
    Abstract: A simple digital-to-analog converter (DAC) may be used to monitor a load current. The DAC may be configured to generate a voltage corresponding to an estimate of an average value of the load current. A comparator may be used to compare that voltage with a sense voltage corresponding to the actual load current. The estimate may then be adjusted based on a sample of the comparator output, allowing the estimate to track the load current over time, thus providing an average measurement capability without using a fast analog-to-digital converter. The DAC may additionally be configured to generate respective voltages corresponding to specified over-current (OC) and under-current (UC) values. The comparator may then be used to compare these respective voltages with the sense voltage to respectively detect OC and UC faults. Noise immunity may be increased by integrating a number of comparator samples instead of a single comparator sample before adjusting the estimate.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: September 15, 2009
    Assignee: Zilker Labs, Inc.
    Inventor: Kenneth W. Fernald
  • Patent number: 7568117
    Abstract: Adaptive thresholding technique for power supplies during margining events. A power supply may include a fault detection mechanism for monitoring an output voltage of the power supply to determine whether the output voltage is greater than a first over-voltage threshold or less than a first under-voltage threshold. If a margining event changes the power supply output voltage, the fault detection mechanism may dynamically change a first over-voltage threshold and a first under-voltage threshold based on the margining event to a second over-voltage threshold and a second under-voltage threshold. Then, during the margining event, the fault detection mechanism may monitor the output voltage of the power supply to determine whether the output voltage is greater than a second over-voltage threshold or less than a second under-voltage threshold. The fault detection mechanism may dynamically change a fault threshold in proportion to the change in the power supply output voltage.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: July 28, 2009
    Assignee: Zilker Labs, Inc.
    Inventor: Kenneth W. Fernald
  • Patent number: 7504900
    Abstract: An integrated circuit package includes a processing core and an internal oscillator. The processing core operates on a set of instructions to carry out predefined processes. The internal oscillator provides a system clock for the integrated circuit package. The internal oscillator has associated therewith an internal control register for controlling the operation of the internal oscillator responsive to control bits of the internal oscillator controlled by the processing core.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: March 17, 2009
    Assignee: Silicon Labs CP, Inc.
    Inventors: Donald E. Alfano, Danny J. Allred, Douglas S. Piasecki, Kenneth W. Fernald, Ka Y. Leung, Brian Caloway, Alan Storvik, Paul Highley, Douglas R. Holberg
  • Patent number: 7505540
    Abstract: Clock recovery method for bursty communications. A method is disclosed for recovering the clock from a received data stream that comprising bursts of data with zones of substantially no data between the bursts of data. A receive clock is provided that operates within a reference frequency range. The time between data transitions in the received data is then measuring relative to the receive clock. A determination is then made if the measured time is substantially an integral of the receive clock. If not a substantial integral of the receive clock, the frequency of the receive clock is adjusted to compensate for the difference.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: March 17, 2009
    Assignee: Silicon Labs CP, Inc.
    Inventor: Kenneth W. Fernald
  • Patent number: 7498962
    Abstract: A method for converting analog data to digital data includes operating an analog-to-digital data converter in a tracking mode to sample an input signal and in a convert mode to convert the sampled input signal after sampling to a digital signal. The analog-to-digital data converter is controlled with a controller to operate in different modes of operation by providing at least one step wherein the tracking mode of operation is controlled to initiate at a predetermined time to begin the sampling operation.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: March 3, 2009
    Assignee: Silicon Labs CP, Inc.
    Inventors: Donald E. Alfano, Danny J. Allred, Douglas S. Piasecki, Kenneth W. Fernald, Ka Y. Leung, Brian Caloway, Alvin Storvik, Paul Highley, Douglas R. Holberg
  • Patent number: 7492139
    Abstract: A method is disclosed for converting DC power from a first voltage level on an input to a different voltage level on an output for delivery to a load. The method includes switching current in a switching operation from the input to the output through an inductive element and measuring the voltage/current parameters on the input and output. A control algorithm is then utilized to determine control parameters necessary to make a control move to effect the switching operation, the control algorithm utilizing as inputs the measured voltage/current parameters. A digital control system controls the switching operation, which digital control system is operable to be controlled by the control algorithm. Configuration data is received on a serial data bus for configuring the control algorithm. Thereafter, the operation of the control algorithm is modified in response to receiving the configuration information.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: February 17, 2009
    Assignee: Silicon Labs CP, Inc.
    Inventors: Donald E. Alfano, Paul Highley, Kenneth W. Fernald
  • Publication number: 20080270817
    Abstract: A precision oscillator for an asynchronous transmission system. An integrated system on a chip with serial asynchronous communication capabilities includes processing circuitry for performing predefined digital processing functions on the chip and having an associated on chip free running clock circuit for generating a temperature compensated clock. An on-chip UART is provided for digitally communicating with an off-chip UART, which off-chip UART has an independent time reference, which communication between the on-chip UART and the off-chip UART is effected without clock recovery. The on-chip UART has a time-base derived from the temperature compensated clock. The temperature compensated clock provides a time reference for both the processing circuitry and the on-chip UART.
    Type: Application
    Filed: July 1, 2008
    Publication date: October 30, 2008
    Applicant: SILICON LABS CP, INC.
    Inventors: KARTIKA PRIHADI, KENNETH W. FERNALD
  • Patent number: 7395447
    Abstract: A precision oscillator for an asynchronous transmission system. An integrated system on a chip with serial asynchronous communication capabilities includes processing circuitry for performing predefined digital processing functions on the chip and having an associated on chip free running clock circuit for generating a temperature compensated clock. An asynchronous on-chip communication device is provided for digitally communicating with an off-chip asynchronous communication device, which off-chip asynchronous communication device has an independent time reference, which communication between the on-chip communication device and the off-chip asynchronous communication device is effected without clock recovery. The asynchronous on-chip communication device has a time-base derived from the temperature compensated clock. The temperature compensated clock provides a time reference for both the processing circuitry and the asynchronous on-chip communication device.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: July 1, 2008
    Assignee: Silicon Labs CP, Inc.
    Inventors: Kartika Prihadi, Kenneth W. Fernald
  • Publication number: 20080155289
    Abstract: A microcontroller unit (MCU) is disclosed with a stand-alone Real Time Clock (RTC). The MCU includes a processing circuit for receiving digital information and processing said received digital information. A primary clock circuit provides the timing for the processing circuit. A power control circuit controls the power to the processing circuit and the primary clock circuit to control the operation thereof to operate in at least a full power mode drawing a full power level from a supply voltage input and a reduced power mode drawing less than the full power level from the supply voltage input. A stand-alone RTC circuit is also provided, the stand-alone RTC circuit including an RTC clock circuit operating independent of the primary clock circuit. A timer clocked by the RTC clock circuit is operable to increment a stored time value for output therefrom, the RTC clock circuit having a defined time base. An input/output (I/O) device provides access by the processing circuit to the results output by the timer.
    Type: Application
    Filed: March 11, 2008
    Publication date: June 26, 2008
    Applicant: SILICON LABS CP, INC.
    Inventors: KENNETH W. FERNALD, DONALD E. ALFANO