Patents by Inventor Keon Jae Lee

Keon Jae Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10399291
    Abstract: The present invention provides a smart contact lens including a sensor capable of non-invasively sensing an eye disease in real time and a drug reservoir, and smart glasses for controlling the smart contact lens.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: September 3, 2019
    Assignee: PHI BIOMED CO., LTD.
    Inventors: Sei Kwang Hahn, Young Chul Sung, Beom Ho Mun, Keon Jae Lee, Dohee Keum, Su Jin Kim
  • Patent number: 10374072
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: August 6, 2019
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Patent number: 10290785
    Abstract: A laminating structure of an electronic device using a transferring element according to the present disclosure includes a target substrate, a bottom electrode formed on the target substrate, an electronic device which is bonded to the bottom electrode, a top contact formed on the electronic device, a transferring element which is placed between the bottom electrode and the electronic device on the target substrate, and a top electrode connected to the electronic device, wherein the transferring element attached to the carrier substrate comes into contact with the electronic device, and is then transferred onto the target substrate.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: May 14, 2019
    Assignee: CENTER FOR INTEGRATED SMART SENSORS FOUNDATION
    Inventors: Keon Jae Lee, Han Eol Lee, Do Hyun Kim, Jung Ho Shin, Seong Kwang Hong
  • Publication number: 20190103532
    Abstract: A laminating structure of an electronic device using a transferring element according to the present disclosure includes a target substrate, a bottom electrode formed on the target substrate, an electronic device which is bonded to the bottom electrode, a top contact formed on the electronic device, a transferring element which is placed between the bottom electrode and the electronic device on the target substrate, and a top electrode connected to the electronic device, wherein the transferring element attached to the carrier substrate comes into contact with the electronic device, and is then transferred onto the target substrate.
    Type: Application
    Filed: October 3, 2017
    Publication date: April 4, 2019
    Inventors: Keon Jae Lee, Han Eol Lee, Do Hyun Kim, Jung Ho Shin, Seong Kwang Hong
  • Patent number: 10166400
    Abstract: Provided is a method for separating a nanogenerator, which includes laminating a buffer layer on a sacrificial substrate, making a nanogenerator on the buffer layer, laminating a metal layer on the nanogenerator and separating the nanogenerator from the buffer layer. Here, a nanogenerator is separated by using a stress difference between the sacrificial substrate and the metal layer, instead of an existing method in which a nanogenerator is separated from the sacrificial substrate by means of wet etching or the like. In particular, according to a difference between a tensile stress at the metal layer such as nickel and a compressive stress at the lower silicon substrate, the nanogenerator is intactly separated from the silicon oxide layer serving as a buffer layer. Therefore, the nanogenerator may be separated from the sacrificial substrate in a mechanical way, which is safer and more economic in comparison to an existing chemical separation method using an etching solution.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: January 1, 2019
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Keon Jae Lee, Myung Hwan Byun, Kwi Il Park, Geon Tae Hwang, Chang Kyu Chung
  • Patent number: 10172241
    Abstract: Provided is a flexible device, which includes a flexible substrate, a plurality of electrode lines provided on the flexible substrate and configured to contact the following anisotropic conductive film and then extend to a side of the flexible substrate, an anisotropic conductive film configured to contact the electrode line and laminated on the flexible substrate, a plurality of bumps provided on the anisotropic conductive film, and a circuit board having an electronic device provided at one side thereof and configured to contact the plurality of bumps.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: January 1, 2019
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Kyung Wook Baek, Keon Jae Lee, Geon Tae Hwang, Hyeon Kyun Yoo, Do Hyun Kim, Yoo Sun Kim
  • Publication number: 20180036974
    Abstract: The present invention provides a smart contact lens including a sensor capable of non-invasively sensing an eye disease in real time and a drug reservoir, and smart glasses for controlling the smart contact lens.
    Type: Application
    Filed: April 25, 2016
    Publication date: February 8, 2018
    Inventors: Sei Kwang HAHN, Young Chul SUNG, Beom Ho MUN, Keon Jae LEE, Dohee KEUM, Su Jin KIM
  • Publication number: 20180016403
    Abstract: Provided are a method for manufacturing a nano-pattern including: increasing a temperature of a self-assembling material applied on a substrate through light irradiation to form a self-assembly pattern, and a nano-pattern manufactured thereby. More particularly, the present invention relates to a method for manufacturing a nano-pattern capable of implementing various circuit patterns through simple dragging without using a photoresist pattern or chemical pattern in advance, implementing the nano-pattern on a substrate having a three-dimensional structure such as a flexible substrate as well as a flat substrate, and performing a process without a specific environmental restriction. In addition, the present invention relates to a method for manufacturing a nano-pattern capable of forming a large-area self-assembly pattern within a very short time, that is, several to several ten milliseconds (ms) by instantly irradiating high-energy flash light to instantly perform thermal annealing.
    Type: Application
    Filed: June 2, 2017
    Publication date: January 18, 2018
    Inventors: Sang Ouk KIM, Hyeong Min JIN, Keon Jae LEE, Seung Hyun LEE, Ju Young KIM
  • Publication number: 20170309733
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 26, 2017
    Inventors: Ralph G. NUZZO, John A. ROGERS, Etienne MENARD, Keon Jae LEE, Dahl-Young KHANG, Yugang SUN, Matthew MEITL, Zhengtao ZHU
  • Publication number: 20170299426
    Abstract: Disclosed is a piezoelectric voice recognition sensor, which includes a flexible thin film, a piezoelectric material layer laminated on the flexible thin film, and an electrode laminated on the piezoelectric material layer, wherein the electrode includes a plurality of frequency separation channels arranged in a row, and the plurality of frequency separation channels have different lengths from each other. The piezoelectric voice recognition sensor separates a voice, recognized using a plurality of frequency separation channels having a trapezoidal shape, through the plurality of channels depending on frequencies, and simultaneously converts the separated voice signals from mechanical vibration signals into electric signals by means of the flexible piezoelectric element so that the converted electric signals are recognized.
    Type: Application
    Filed: June 9, 2016
    Publication date: October 19, 2017
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Keon Jae Lee, Jae Hyun Han, Daniel Joe
  • Patent number: 9768086
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: September 19, 2017
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Patent number: 9761444
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: September 12, 2017
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Publication number: 20160293794
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Application
    Filed: March 29, 2016
    Publication date: October 6, 2016
    Inventors: Ralph G. NUZZO, John A. ROGERS, Etienne MENARD, Keon Jae LEE, Dahl-Young KHANG, Yugang SUN, Matthew MEITL, Zhengtao ZHU
  • Publication number: 20160284544
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Application
    Filed: March 29, 2016
    Publication date: September 29, 2016
    Inventors: Ralph G. NUZZO, John A. ROGERS, Etienne MENARD, Keon Jae LEE, Dahl-Young KHANG, Yugang SUN, Matthew MEITL, Zhengtao ZHU
  • Patent number: 9450043
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: September 20, 2016
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Publication number: 20160223842
    Abstract: One aspect of the present disclosure relates to a remotely controllable lens device. The lens device can include a lens material and a circuit physically coupled to the lens material. The circuit can be configured to be powered based on an energy signal from a power source to perform a function (e.g., release of drug, generation of electromagnetic radiation, detection of electromagnetic radiation, and/or control of an optical refractive property). For example, the power source can be an external power source and/or an auto-powered source. The external power source can be, for example, a power source that utilizes synchronized magnetic flux phase coupling (e.g., WiTricity). The auto-powered source can be provided on-site (e.g., on-chip) using a harvesting system (e.g., solar-cell, photo-cell, piezoelectric, etc.
    Type: Application
    Filed: September 9, 2014
    Publication date: August 4, 2016
    Inventors: Seok-Hyun Yun, Ehsan Kamrani, Sei Kwang Hahn, Hyemin Kim, Dohee Keum, Keon Jae Lee, Choun-Ki Joo
  • Publication number: 20150224324
    Abstract: Provided is a method for separating a nanogenerator, which includes laminating a buffer layer on a sacrificial substrate, making a nanogenerator on the buffer layer, laminating a metal layer on the nanogenerator and separating the nanogenerator from the buffer layer. Here, a nanogenerator is separated by using a stress difference between the sacrificial substrate and the metal layer, instead of an existing method in which a nanogenerator is separated from the sacrificial substrate by means of wet etching or the like. In particular, according to a difference between a tensile stress at the metal layer such as nickel and a compressive stress at the lower silicon substrate, the nanogenerator is intactly separated from the silicon oxide layer serving as a buffer layer. Therefore, the nanogenerator may be separated from the sacrificial substrate in a mechanical way, which is safer and more economic in comparison to an existing chemical separation method using an etching solution.
    Type: Application
    Filed: November 11, 2014
    Publication date: August 13, 2015
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Keon Jae LEE, Myung Hwan Byun, Kwi II Park, Geon Tae Hwang, Chang Kyu Chung
  • Publication number: 20150077949
    Abstract: Provided is a flexible device, which includes a flexible substrate, a plurality of electrode lines provided on the flexible substrate and configured to contact the following anisotropic conductive film and then extend to a side of the flexible substrate, an anisotropic conductive film configured to contact the electrode line and laminated on the flexible substrate, a plurality of bumps provided on the anisotropic conductive film, and a circuit board having an electronic device provided at one side thereof and configured to contact the plurality of bumps.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 19, 2015
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kyung Wook Baek, Keon Jae Lee, Geon Tae Hwang, Hyeon Kyun Yoo, Do Hyun Kim, Yoo Sun Kim
  • Patent number: 8980673
    Abstract: Provided are a solar cell and a method of manufacturing the same. The method of manufacturing the solar cell includes stacking a solar cell device layer containing GaN on a sacrificial substrate, etching the solar cell device layer to expose the sacrificial substrate, thereby forming one or more solar cell devices comprising the solar cell device layer, anisotropically etching the exposed sacrificial substrate, contacting the solar cell devices to a stamping processor to remove the solar cell devices from the sacrificial substrate, and transferring the solar cell devices onto a receiving substrate. A high temperature semiconductor process may be performed on a substrate such as a silicon substrate to transfer the solar cell devices onto the substrate, thereby manufacturing flexible solar cells. Also, a large number of solar cells may be excellently aligned on a large area. In addition, economical solar cells may be manufactured.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: March 17, 2015
    Assignees: LG Siltron Incorporated, Korea Advanced Institute of Science
    Inventors: Keon Jae Lee, Sang Yong Lee, Seung Jun Kim
  • Patent number: 8822970
    Abstract: Provided are a phase-change memory device using insulating nanoparticles, a flexible phase-change memory device and a method for manufacturing the same. The phase-change memory device includes an electrode, and a phase-change layer in which a phase change occurs depending on heat generated from the electrode, wherein insulating nanoparticles formed from a self-assembled block copolymer are provided between the electrode and the phase-change layer undergoing crystallization and amorphization.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: September 2, 2014
    Assignee: Korea Advanced Institute of Science and Technology (KAIST)
    Inventors: Yeon Sik Jung, Keon Jae Lee, Jae Won Jeong, Jae Suk Choi, Geon Tae Hwang, Beom Ho Mun, Byoung Kuk You, Seung Jun Kim