Patents by Inventor Kevin Shaw

Kevin Shaw has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6456766
    Abstract: Packaging of micromechanical and microelectromechanical devices is carried out by mechanical couplers for connecting pairs or arrays of optical fibers in end-to-end alignment. In another embodiment, a coupler interconnects one or more optical components on a substrate. The electrical components may be active elements such as light sources or light sensors, while the optical components may be waveguides. The fibers are secured in a coupler block, and a substrate carrying the light detector or light source is mounted on or in the block and is secured in alignment with the fibers. The fibers are removably secured within the block by spring fingers. The coupler block may include electrical circuitry connectable to the sensors or light sources on the substrate mounted on the block through wire bonding techniques.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: September 24, 2002
    Assignee: Cornell Research Foundation Inc.
    Inventors: Kevin A. Shaw, James S. Sutherland
  • Patent number: 6444138
    Abstract: Three fundamental and three derived aspects of the present invention are disclosed. The three fundamental aspects each disclose a process sequence that may be integrated in a full process. The first aspect, designated as “latent masking”, defines a mask in a persistent material like silicon oxide that is held abeyant after definition while intervening processing operations are performed. The latent oxide pattern is then used to mask an etch. The second aspect, designated as “simultaneous multi-level etching (SMILE)”, provides a process sequence wherein a first pattern may be given an advanced start relative to a second pattern in etching into an underlying material, such that the first pattern may be etched deeper, shallower, or to the same depth as the second pattern. The third aspect, designated as “delayed LOCOS”, provides a means of defining a contact hole pattern at one stage of a process, then using the defined pattern at a later stage to open the contact holes.
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: September 3, 2002
    Inventors: James E. Moon, Timothy J. Davis, Gregory J. Galvin, Kevin A. Shaw, Paul C. Waldrop, Sharlene A. Wilson
  • Publication number: 20020113034
    Abstract: Three fundamental and three derived aspects of the present invention are disclosed. The three fundamental aspects each disclose a process sequence that may be integrated in a full process. The first aspect, designated as “latent masking”, defines a mask in a persistent material like silicon oxide that is held abeyant after definition while intervening processing operations are performed. The latent oxide pattern is then used to mask an etch. The second aspect, designated as “simultaneous multi-level etching (SMILE)”, provides a process sequence wherein a first pattern may be given an advanced start relative to a second pattern in etching into an underlying material, such that the first pattern may be etched deeper, shallower, or to the same depth as the second pattern. The third aspect, designated as “delayed LOCOS”, provides a means of defining a contact hole pattern at one stage of a process, then using the defined pattern at a later stage to open the contact holes.
    Type: Application
    Filed: November 2, 2001
    Publication date: August 22, 2002
    Applicant: Kionix, Inc.
    Inventors: James E. Moon, Timothy J. Davis, Gregory J. Galvin, Kevin A. Shaw, Paul C. Waldrop, Sharlene A. Wilson
  • Publication number: 20020092822
    Abstract: Three fundamental and three derived aspects of the present invention are disclosed. The three fundamental aspects each disclose a process sequence that may be integrated in a full process. The first aspect, designated as “latent masking”, defines a mask in a persistent material like silicon oxide that is held abeyant after definition while intervening processing operations are performed. The latent oxide pattern is then used to mask an etch. The second aspect, designated as “simultaneous multi-level etching (SMILE)”, provides a process sequence wherein a first pattern may be given an advanced start relative to a second pattern in etching into an underlying material, such that the first pattern may be etched deeper, shallower, or to the same depth as the second pattern. The third aspect, designated as “delayed LOCOS”, provides a means of defining a contact hole pattern at one stage of a process, then using the defined pattern at a later stage to open the contact holes.
    Type: Application
    Filed: November 2, 2001
    Publication date: July 18, 2002
    Applicant: Kionix, Inc.
    Inventors: James E. Moon, Timothy J. Davis, Gregory J. Galvin, Kevin A. Shaw, Paul C. Waldrop, Sharlene A. Wilson
  • Publication number: 20020084249
    Abstract: Three fundamental and three derived aspects of the present invention are disclosed. The three fundamental aspects each disclose a process sequence that may be integrated in a full process. The first aspect, designated as “latent masking”, defines a mask in a persistent material like silicon oxide that is held abeyant after definition while intervening processing operations are performed. The latent oxide pattern is then used to mask an etch. The second aspect, designated as “simultaneous multi-level etching (SMILE)”, provides a process sequence wherein a first pattern may be given an advanced start relative to a second pattern in etching into an underlying material, such that the first pattern may be etched deeper, shallower, or to the same depth as the second pattern. The third aspect, designated as “delayed LOCOS”, provides a means of defining a contact hole pattern at one stage of a process, then using the defined pattern at a later stage to open the contact holes.
    Type: Application
    Filed: November 2, 2001
    Publication date: July 4, 2002
    Applicant: Kionix, Inc.
    Inventors: James E. Moon, Timothy J. Davis, Gregory J. Galvin, Kevin A. Shaw, Paul C. Waldrop, Sharlene A. Wilson
  • Publication number: 20020084242
    Abstract: Three fundamental and three derived aspects of the present invention are disclosed. The three fundamental aspects each disclose a process sequence that may be integrated in a full process. The first aspect, designated as “latent masking”, defines a mask in a persistent material like silicon oxide that is held abeyant after definition while intervening processing operations are performed. The latent oxide pattern is then used to mask an etch. The second aspect, designated as “simultaneous multi-level etching (SMILE)”, provides a process sequence wherein a first pattern may be given an advanced start relative to a second pattern in etching into an underlying material, such that the first pattern may be etched deeper, shallower, or to the same depth as the second pattern. The third aspect, designated as “delayed LOCOS”, provides a means of defining a contact hole pattern at one stage of a process, then using the defined pattern at a later stage to open the contact holes.
    Type: Application
    Filed: November 2, 2001
    Publication date: July 4, 2002
    Applicant: Kionix, Inc.
    Inventors: James E. Moon, Timothy J. Davis, Gregory J. Galvin, Kevin A. Shaw, Paul C. Waldrop, Sharlene A. Wilson
  • Publication number: 20020079287
    Abstract: Three fundamental and three derived aspects of the present invention are disclosed. The three fundamental aspects each disclose a process sequence that may be integrated in a full process. The first aspect, designated as “latent masking”, defines a mask in a persistent material like silicon oxide that is held abeyant after definition while intervening processing operations are performed. The latent oxide pattern is then used to mask an etch. The second aspect, designated as “simultaneous multi-level etching (SMILE)”, provides a process sequence wherein a first pattern may be given an advanced start relative to a second pattern in etching into an underlying material, such that the first pattern may be etched deeper, shallower, or to the same depth as the second pattern. The third aspect, designated as “delayed LOCOS”, provides a means of defining a contact hole pattern at one stage of a process, then using the defined pattern at a later stage to open the contact holes.
    Type: Application
    Filed: November 2, 2001
    Publication date: June 27, 2002
    Applicant: Kionix, Inc.
    Inventors: James E. Moon, Timothy J. Davis, Gregory J. Galvin, Kevin A. Shaw, Paul C. Waldrop, Sharlene A. Wilson
  • Publication number: 20020063107
    Abstract: Three fundamental and three derived aspects of the present invention are disclosed. The three fundamental aspects each disclose a process sequence that may be integrated in a full process. The first aspect, designated as “latent masking”, defines a mask in a persistent material like silicon oxide that is held abeyant after definition while intervening processing operations are performed. The latent oxide pattern is then used to mask an etch. The second aspect, designated as “simultaneous multi-level etching (SMILE)”, provides a process sequence wherein a first pattern may be given an advanced start relative to a second pattern in etching into an underlying material, such that the first pattern may be etched deeper, shallower, or to the same depth as the second pattern. The third aspect, designated as “delayed LOCOS”, provides a means of defining a contact hole pattern at one stage of a process, then using the defined pattern at a later stage to open the contact holes.
    Type: Application
    Filed: November 2, 2001
    Publication date: May 30, 2002
    Applicant: Kionix, Inc.
    Inventors: James E. Moon, Timothy J. Davis, Gregory J. Galvin, Kevin A. Shaw, Paul C. Waldrop, Sharlene A. Wilson
  • Publication number: 20020011759
    Abstract: A method and apparatus are described that may be used to provide decoupled rotation of structures about different pivot points. The apparatus may include one or more fixed blades mounted to a frame or substrate, one or more movable blades mounted to each structure to be moved, and flexures on which the structures are suspended. Separate movable blades may be provided for each degree of freedom. When voltage is applied between the fixed and movable blades, the electrostatic attraction generates a force attracting movable blades toward blades that are fixed relative to the moveable blades, causing a structure to rotate about the flexures. The angle of rotation that results may be related to the size, number and spacing of the blades, the stiffness of the flexures and the magnitude of the voltage difference applied to the blades. The blades are fabricated using deep silicon etching.
    Type: Application
    Filed: February 2, 2001
    Publication date: January 31, 2002
    Inventors: Scott Adams, Tim Davis, Scott Miller, Kevin Shaw, John Matthew Chong, Seung Bok (Chris) Lee
  • Patent number: 6342430
    Abstract: An isolation process which enhances the performance of silicon micromechanical devices incorporates dielectric isolation segments within the silicon microstructure, which is otherwise composed of an interconnected grid of cantilevered beams. A metal layer on top of the beams provides interconnects and also allows contact to the silicon beams, electrically activating the device for motion or transduction. Multiple conduction paths are incorporated through a metal patterning step prior to structure definition. The invention improves manufacturability of previous processes by performing all lithographic patterning steps on flat topographies, and removing complicated metal sputtering steps required of most high aspect ratio processes. With little modification, the invention can be implemented with in grated circuit fabrication sequences for fully integrated devices.
    Type: Grant
    Filed: April 13, 2000
    Date of Patent: January 29, 2002
    Assignees: Kionix, Inc., Cornell Research Foundation
    Inventors: Scott G. Adams, Kevin A. Shaw, Russell Y. Webb, Bryan W. Reed, Noel C. MacDonald, Timothy J. Davis
  • Patent number: 6239473
    Abstract: An isolation process which enhances the performance of silicon micromechanical devices incorporates dielectric isolation segments within the silicon microstructure, which is otherwise composed of an interconnected grid of cantilevered beams. A metal layer on top of the beams provides interconnects and also allows contact to the silicon beams, electrically activating the device for motion or transduction. Multiple conduction paths are incorporated through a metal patterning step prior to structure definition. The invention improves manufacturability of previous processes by performing all lithographic patterning steps on flat topographies, and removing complicated metal sputtering steps required of most high aspect ratio processes. With little modification, the invention can be implemented with integrated circuit fabrication sequences for fully integrated devices.
    Type: Grant
    Filed: January 14, 1999
    Date of Patent: May 29, 2001
    Assignees: Kionix, Inc., Cornell Research Foundation Inc.
    Inventors: Scott G. Adams, Kevin A. Shaw, Russell Y. Webb, Bryan W. Reed, Noel C. MacDonald, Timothy J. Davis
  • Patent number: 6170332
    Abstract: A micromechanical capacitive accelerometer is provided from a single silicon wafer. The basic structure of the micromechanical accelerometer is etched in the wafer to form a released portion in the substrate, and the released and remaining portions of the substrate are coated with metal under conditions sufficient to form a micromechanical capacitive accelerometer. The substrate is preferably etched using reactive-ion etching for at least the first etch step in the process that forms the basic structure, although in another preferred embodiment, all etching is reactive-ion etching. The accelerometer also may comprise a signal-conditioned accelerometer wherein signal-conditioning circuitry is provided on the same wafer from which the accelerometer is formed, and VLSI electronics may be integrated on the same wafer from which the accelerometer is formed.
    Type: Grant
    Filed: April 19, 2000
    Date of Patent: January 9, 2001
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Noel C. MacDonald, Kevin A. Shaw, Scott G. Adams
  • Patent number: 6093330
    Abstract: A single-mask process for fabricating enclosed, micron-scale subsurface cavities in a single crystal silicon substrate includes the steps of patterning the substrate to form vias, etching the cavities through the vias, and sealing the vias. Single cavities of any configuration may be produced, but a preferred embodiment includes closely spaced cavity pairs. The cavities may be separated by a thin membrane, or may be merged to form an enlarged merged cavity having an overhanging bar to which electrical leads may be connected. A three-mask process for fabricating enclosed cavities with electrical contacts and electrical connections is also disclosed.
    Type: Grant
    Filed: June 2, 1997
    Date of Patent: July 25, 2000
    Assignee: Cornell Research Foundation, Inc.
    Inventors: John M. Chong, Scott G. Adams, Noel C. MacDonald, Kevin A. Shaw
  • Patent number: 6051866
    Abstract: A single mask, low temperature reactive ion etching process for fabricating high aspect ratio, released single crystal microelectromechanical structures independently of crystal orientation.
    Type: Grant
    Filed: August 11, 1998
    Date of Patent: April 18, 2000
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Kevin A. Shaw, Z. Lisa Zhang, Noel C. MacDonald
  • Patent number: 5847454
    Abstract: A single mask, low temperature reactive ion etching process for fabricating high aspect ratio, released single crystal microelectromechanical structures independently of crystal orientation.
    Type: Grant
    Filed: September 22, 1994
    Date of Patent: December 8, 1998
    Assignee: Cornell Research Foundcatton, Inc.
    Inventors: Kevin A. Shaw, Z. Lisa Zhang, Noel C. MacDonald
  • Patent number: 5846849
    Abstract: A single mask, low temperature reactive ion etching process for fabricating high aspect ratio, released single crystal microelectromechanical structures independently of crystal orientation.
    Type: Grant
    Filed: February 24, 1997
    Date of Patent: December 8, 1998
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Kevin A. Shaw, Z. Lisa Zhang, Noel C. MacDonald
  • Patent number: 5719073
    Abstract: A single mask, low temperature reactive ion etching process for fabricating high aspect ratio, released single crystal microelectromechanical structures independently of crystal orientation.
    Type: Grant
    Filed: September 27, 1994
    Date of Patent: February 17, 1998
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Kevin A. Shaw, Z. Lisa Zhang, Noel C. MacDonald
  • Patent number: 5640133
    Abstract: A tunable electromicromechanical resonator structure incorporates an electrostatic actuator which permits reduction or enhancement of the resonant frequency of the structure. The actuator consists of two sets of opposed electrode fingers, each set having a multiplicity of spaced, parallel fingers. One set is mounted on a movable portion of the resonator structure and one set is mounted on an adjacent fixed base on substrate, with the fingers in opposed relationship and their adjacent ends spaced apart by a gap. An adjustable bias voltage across the sets of electrodes adjusts the resonant frequency of the movable structure.
    Type: Grant
    Filed: June 23, 1995
    Date of Patent: June 17, 1997
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Noel C. MacDonald, Fred M. Bertsch, Kevin A. Shaw, Scott G. Adams
  • Patent number: 5610335
    Abstract: A microelectromechanical accelerometer having submicron features is fabricated from a single crystal silicon substrate. The accelerometer includes a movable portion incorporating an axial beam carrying laterally-extending high aspect ratio released fingers cantilevered above the floor of a cavity formed in the substrate during the fabrication process. The movable portion is supported by restoring springs having controllable flexibility to vary the resonant frequency of the structure. A multiple-beam structure provides stiffness in the movable portion for accuracy.
    Type: Grant
    Filed: May 19, 1994
    Date of Patent: March 11, 1997
    Assignee: Cornell Research Foundation
    Inventors: Kevin A. Shaw, Scott G. Adams, Noel C. MacDonald
  • Patent number: 5607353
    Abstract: In an airlock system, through which drums containing radioactive material are transferred into a containment area, a passage has an intermediate region, of reduced cross section relative to the inlet and outlet ends of the passage. The passage has a convergent inlet region and a divergent outlet region leading, respectively, to and from the intermediate region. The passage functions in the manner of a venturi so that an airstream is caused to flow along the passage towards the containment so as to inhibit the escape of atmosphere therefrom. A roller conveyor transfers the items through the airlock system and a detector monitors the atmosphere in the passage.
    Type: Grant
    Filed: August 19, 1994
    Date of Patent: March 4, 1997
    Assignee: British Nuclear Fuels plc
    Inventors: Adrian C. Hutchings, John Grimes, Kevin Shaw