Patents by Inventor Khai Nguyen

Khai Nguyen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6661733
    Abstract: Methods and apparatus for a dual-port SRAM in a programmable logic device. One embodiment provides a programmable logic integrated circuit including a dual-port memory. The memory includes a plurality of memory storage cells, and each memory storage cell has a memory cell having a first node and a second node, a first series of devices connected between a first data line and the first node of the memory cell, and a second series of devices connected between a second data line and the second node of the memory cell. A read cell is connected to the second node of the memory cell. A word line is connected to a first device in the first series of devices, a second device in the second series of devices, and the read cell.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: December 9, 2003
    Assignee: Altera Corporation
    Inventors: Philip Y. Pan, Chiakang Sung, Joseph Huang, Bonnie Wang, Khai Nguyen, Xiaobao Wang, Gopinath Rangan, In Whan Kim, Yan Chong
  • Patent number: 6642758
    Abstract: A circuit provides a programmable phase shift feature, where the phase shift is programmably selectable by a user. This circuitry may be incorporated in a programmable logic device (PLD) or field programmable gate array (FPGA) to provide additional programmability features. The programmable phase shift circuitry may be implemented within a phase locked loop (PLL) or delay locked loop (DLL) circuit. In an implementation, the programmable phase shift circuitry is implemented using two programmable counters.
    Type: Grant
    Filed: December 5, 2000
    Date of Patent: November 4, 2003
    Assignee: Altera Corporation
    Inventors: Bonnie I. Wang, Joseph Huang, Chiakang Sung, Xiaobao Wang, In Whan Kim, Wayne Yeung, Khai Nguyen
  • Patent number: 6630844
    Abstract: A supply voltage detection circuit determines when the voltage for any one of the power supply signals received by an integrated circuit device is below its steady state level, as may occur during a hot socket condition when the device is inserted in or removed from a powered-on system. A first detection circuit determines when the first supply voltage level is below its steady state level, and a second detection circuit determines when the second supply voltage level is below its steady state level. A logic circuit provides a detected condition signal that disables current flow through an input/output terminal associated with the supply voltage detection circuit. The circuit is able to rapidly detect hot socket conditions for a wide range of power supply signal; levels, including low supply signal levels, while limiting leakage current effects.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: October 7, 2003
    Assignee: Altera Corporation
    Inventors: Yan Chong, Chiakang Sung, Bonnie Wang, Khai Nguyen, Joseph Huang, Xiaobao Wang, Philip Pan, In Whan Kim, Gopi Rangan, Tzung-Chin Chang, Surgey Y. Shumarayev, Thomas H. White
  • Patent number: 6617884
    Abstract: A phase frequency detector (PFD) circuit (516) compares two clock signals and generates a number of outputs to indicate a phase difference between these two clock signals (513, 519). The phase frequency detector has more than three states. The PFD circuit may be used in phase locked loop (PLL) or delay locked loop (DLL) circuit in order to maintain or lock a phase relationship between the two clock signals. The PFD circuitry will allow for a fast lock acquisition time, even when there is a relatively wide frequency range between the two clock signals.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: September 9, 2003
    Assignee: Altera Corporation
    Inventors: Xiaobao Wang, Chiakang Sung, Joseph Huang, Bonnie I. Wang, Khai Nguyen, Wayne Yeung, In Whan Kim
  • Patent number: 6603329
    Abstract: Techniques for on-chip impedance termination are provided that substantially reduce the number of external resistors that are need to provide impedance termination at a plurality of pairs of differential input/output (I/O) pins. On-chip impedance termination circuits of the present invention may include an amplifier, a feedback loop, and an impedance termination circuit. A reference voltage is provided to a first input terminal of the amplifier. A feedback loop is coupled between an output terminal of the amplifier and a second input terminal of the amplifier. The amplifier drives its output voltage so that the voltage at the second input terminal matches the voltage at the first input terminal. The output voltage of the amplifier determines the resistance of the impedance termination circuit. The impedance termination circuit is coupled between differential I/O pins.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: August 5, 2003
    Assignee: Altera Corporation
    Inventors: Xiaobao Wang, Chiakang Sung, Bonnie I. Wang, Khai Nguyen
  • Patent number: 6549045
    Abstract: A digital, preferably programmable, circuit is disclosed for providing one or more clock signals with variable frequency and/or phase. The clock signals exhibit a low amount of skew relative to other clock signals and data signals provided by the circuit. In one embodiment, the circuit includes a plurality of channels each having a parallel-in/serial-out shift register, a flip-flop, and a delay circuit. The shift register can receive data bits in data channels or clock frequency select bits in frequency-divided clock channels. The serial output from the register acts as an input for the flip flop, both of which are triggered by an input reference clock. The delay circuit delays the input reference clock. In each channel, a multiplexer is configured to select the clock or data channel output from the register, flip-flop, and delay circuit outputs. Since the delays in all output paths are matched, skew is minimized.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: April 15, 2003
    Assignee: Altera Corporation
    Inventors: Bonnie Wang, Chiakang Sung, Khai Nguyen, Joseph Huang, Xiaobao Wang, In Whan Kim, Gopi Rangan, Yan Chong, Phillip Pan, Tzung-Chin Chang
  • Patent number: 6538469
    Abstract: A technique to implement functions requiring fewer pins of an integrated circuit to serially transfer data into the integrated circuit for multiple logic blocks. By reducing the required pins, this permits downbonding of the integrated circuit into a package with fewer pins. This technique may be used to implement test Functions in a programmable logic device. Test data may be serially input using a test pin (410) for two or more columns (320) of logic blocks. The test data is stored in an A resister (330), and may be later transferred into a B register (335).
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: March 25, 2003
    Assignee: Altera Corporation
    Inventors: Khai Nguyen, Chiakang Sung, Bonnie Wang, Joseph Huang, Xiaobao Wang
  • Patent number: 6535031
    Abstract: A programmable logic device is equipped for low voltage differential signaling (“LVDS”) by providing an LVDS input buffer and/or an LVDS output buffer on the device. I/O pins on the device that are used together in pairs for LVDS can alternatively be used individually for other types of signaling. The LVDS buffers are constructed to give good performance and to meet LVDS specifications despite variations due to temperature, manufacturing process inconsistency, and power supply changes.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: March 18, 2003
    Assignee: Altera Corporation
    Inventors: Khai Nguyen, Xiaobao Wang, In Whan Kim, Chiakang Sung, Richard G Cliff, Joseph Huang, Bonnie I Wang, Wayne Yeung
  • Publication number: 20030042941
    Abstract: Methods and apparatus for providing either high-speed, or lower-speed, flexible inputs and outputs. An input and output structure having a high-speed input, a high-speed output, a low or moderate speed input, and an low or moderate speed output is provided. One of the input and output circuits are selected and the others are deselected. The high-speed input and output circuits are comparatively simple, in one example having only a clear signal for a control line input, and are able to interface to lower speed circuitry inside the core of an integrated circuit. The low or moderate speed input and output circuits are more flexible, for example, having preset, enable, and clear as control line inputs, and are able to support JTAG boundary testing. These parallel high and lower speed circuits are user selectable such that the input output structure is optimized between speed and functionality depending on the requirements of the application.
    Type: Application
    Filed: August 26, 2002
    Publication date: March 6, 2003
    Applicant: Altera Corporation
    Inventors: Bonnie I. Wang, Chiakang Sung, Joseph Huang, Khai Nguyen, Philip Pan
  • Publication number: 20020158671
    Abstract: A phase frequency detector (PFD) circuit (516) compares two clock signals and generates a number of outputs to indicate a phase difference between these two clock signals (513, 519). The phase frequency detector has more than three states. The PFD circuit may be used in phase locked loop (PLL) or delay locked loop (DLL) circuit in order to maintain or lock a phase relationship between the two clock signals. The PFD circuitry will allow for a fast lock acquisition time, even when there is a relatively wide frequency range between the two clock signals.
    Type: Application
    Filed: May 28, 2002
    Publication date: October 31, 2002
    Applicant: Altera Corporation, a Delaware Corporation
    Inventors: Xiaobao Wang, Chiakang Sung, Joseph Huang, Bonnie I. Wang, Khai Nguyen, Wayne Yeung, In Whan Kim
  • Publication number: 20020157078
    Abstract: A technique to provide higher system performance by increasing amount of data that may be transferred in parallel is to increase the number of external pins available for the input and output of user data (user I/O). Specifically, a technique is to reduce the number of dedicated pins used for user I/O, leaving more external pins available for user I/O. The dedicated pins used to implement a function such as the JTAG boundary scan architecture may be also be used to provide other functionality, such as to select the programming modes. In a specific embodiment, a JTAG instruction code that is not already used for a JTAG boundary scan instruction stored in an instruction register (220) may be used to replace the programming mode select pins (252) in a programmable logic device (PLD).
    Type: Application
    Filed: June 19, 2002
    Publication date: October 24, 2002
    Applicant: Altera Corporation
    Inventors: Xiaobao Wang, Chiakang Sung, Joseph Huang, Bonnie Wang, Khai Nguyen, Richard G. Cliff
  • Patent number: 6448820
    Abstract: A phase frequency detector (PFD) circuit (516) compares two clock signals and generates a number of outputs to indicate a phase difference between these two clock signals (513, 519). The phase frequency detector has more than three states. The PFD circuit may be used in phase locked loop (PLL) or delay locked loop (DLL) circuit in order to maintain or lock a phase relationship between the two clock signals. The PFD circuitry will allow for a fast lock acquisition time, even when there is a relatively wide frequency range between the two clock signals.
    Type: Grant
    Filed: November 2, 1999
    Date of Patent: September 10, 2002
    Assignee: Altera Corporation
    Inventors: Xiaobao Wang, Chiakang Sung, Joseph Huang, Bonnie I. Wang, Khai Nguyen, Wayne Yeung, In Whan Kim
  • Patent number: 6433579
    Abstract: A programmable logic device is equipped for various differential signaling schemes by providing a differential output buffer on the device that can be configured according to the needs of the particular differential signaling schemes that may be used. The buffer includes a differential output driver, an adjustable current limiting circuit between the supply voltage and the differential output driver, and an adjustable current limiting circuit between the differential output driver and ground. By selectively adjusting the two current limiting circuits, the output impedance and current, as well as the common mode output voltage and the differential output voltage can be controlled.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: August 13, 2002
    Assignee: Altera Corporation
    Inventors: Bonnie I. Wang, Chiakang Sung, Yan Chong, Philip Pan, Khai Nguyen, Joseph Huang, Xiaobao Wang, In Whan Kim, Gopinath Rangan
  • Patent number: 6421812
    Abstract: A technique to provide higher system performance by increasing amount of data that may be transferred in parallel is to increase the number of external pins available for the input and output of user data (user I/O). Specifically, a technique is to reduce the number of dedicated pins used for user I/O, leaving more external pins available for user I/O. The dedicated pins used to implement a function such as the JTAG boundary scan architecture may be also be used to provide other functionality, such as to select the programming modes. In a specific embodiment, a JTAG instruction code that is not already used for a JTAG boundary scan instruction stored in an instruction register (220) may be used to replace the programming mode select pins (252) in a programmable logic device (PLD).
    Type: Grant
    Filed: June 9, 1998
    Date of Patent: July 16, 2002
    Assignee: Altera Corporation
    Inventors: Xiaobao Wang, Chiakang Sung, Joseph Huang, Bonnie Wang, Khai Nguyen, Richard G. Cliff
  • Patent number: 6400598
    Abstract: A programmable logic device is equipped for low voltage differential signaling (“LVDS”) by providing an LVDS input buffer and/or an LVDS output buffer on the device. I/O pins on the device that are used together in pairs for LVDS can alternatively be used individually for other types of signaling. The LVDS buffers are constructed to give good performance and to meet LVDS specifications despite variations due to temperature, manufacturing process inconsistency, and power supply changes.
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: June 4, 2002
    Assignee: Altera Corporation
    Inventors: Khai Nguyen, Xiaobao Wang, In Whan Kim, Chiakang Sung, Richard G. Cliff, Joseph Huang, Bonnie I. Wang, Wayne Yeung
  • Patent number: 6384629
    Abstract: An improved interconnection between horizontal conductors and the input to logic elements. A signal regeneration circuit is provided in the path between the horizontal conductor and the logic element, thereby isolating and boosting the signal. This allows for faster switching operation. A path is provided allowing the selective routing of signals from the horizontal conductors to the vertical conductors, without passing through a logic element. Also, a path is provided to allow a horizontal conductors to be routed to any of a plurality of vertical conductors.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: May 7, 2002
    Assignee: Altera Corporation
    Inventors: Joseph Huang, Chiakang Sung, Bonnie I. Wang, Khai Nguyen, Xiaobao Wang, Richard G. Cliff
  • Publication number: 20020043995
    Abstract: A phase frequency detector (PFD) circuit (516) compares two clock signals and generates a number of outputs to indicate a phase difference between these two clock signals (513, 519). The phase frequency detector has more than three states. The PFD circuit may be used in phase locked loop (PLL) or delay locked loop (DLL) circuit in order to maintain or lock a phase relationship between the two clock signals. The PFD circuitry will allow for a fast lock acquisition time, even when there is a relatively wide frequency range between the two clock signals.
    Type: Application
    Filed: November 2, 1999
    Publication date: April 18, 2002
    Inventors: XIAOBAO WANG, CHIAKANG SUNG, JOSEPH HUANG, BONNIE I. WANG, KHAI NGUYEN, WAYNE YEUNG, IN WHAN KIM
  • Patent number: 6369624
    Abstract: A circuit provides a programmable phase shift feature, where the phase shift is programmably selectable by a user. This circuitry may be incorporated in a programmable logic device (PLD) or field programmable gate array (FPGA) to provide additional programmability features. The programmable phase shift circuitry may be implemented within a phase locked loop (PLL) or delay locked loop (DLL) circuit.
    Type: Grant
    Filed: November 2, 1999
    Date of Patent: April 9, 2002
    Assignee: Altera Corporation
    Inventors: Bonnie I. Wang, Joseph Huang, Chiakang Sung, Xiaobao Wang, In Whan Kim, Wayne Yeung, Khai Nguyen
  • Patent number: 6346827
    Abstract: A programmable input/output circuit for a programmable logic device input/output pin can be configured in a standard I/O mode, or in a reference voltage mode. The circuit includes a tristatable, but otherwise standard I/O buffer as well as a reference voltage clamp circuit. In reference voltage mode, the I/O circuit is tristated, and the reference voltage clamp circuit passes a reference voltage from the I/O pin to a reference voltage bus. In standard I/O mode, the I/O buffer is operational. The reference voltage clamp circuit isolates the I/O pin from the reference voltage bus and may include undervoltage and overvoltage protection to prevent disturbance of the reference voltage bus by an out-of-range I/O signal.
    Type: Grant
    Filed: August 4, 1999
    Date of Patent: February 12, 2002
    Assignee: Altera Corporation
    Inventors: Wayne Yeung, Chiakang Sung, Myron W. Wong, Khai Nguyen, Bonnie I. Wang, Xiaobao Wang, Joseph Huang, In Whan Kim
  • Patent number: 6335636
    Abstract: A programmable input/output circuit for a programmable logic device input/output pin can be configured in a standard I/O mode, or in a reference voltage mode. The circuit includes a tristatable, but otherwise standard I/O buffer as well as a reference voltage clamp circuit. In reference voltage mode, the I/O circuit is tristated, and the reference voltage clamp circuit passes a reference voltage from the I/O pin to a reference voltage bus. In standard I/O mode, the I/O buffer is operational. The reference voltage clamp circuit isolates the I/O pin from the reference voltage bus and may include undervoltage and overvoltage protection to prevent disturbance of the reference voltage bus by an out-of-range I/O signal.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: January 1, 2002
    Assignee: Altera Corporation
    Inventors: Wayne Yeung, Chiakang Sung, Myron W. Wong, Khai Nguyen, Bonnie I. Wang, Xiaobao Wang, Joseph Huang, Im Whan Kim