Patents by Inventor Kirk Prall

Kirk Prall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6649453
    Abstract: Floating-gate field-effect transistors or memory cells formed in isolated wells are useful in the fabrication of non-volatile memory arrays and devices. A column of such floating-gate memory cells are associated with a well containing the source/drain regions for each memory cell in the column. These wells are isolated from source/drain regions of other columns of the array. Fowler-Nordheim tunneling can be used to program and erase such floating-gate memory cells either on an individual basis or on a bulk or block basis.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: November 18, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Chun Chen, Andrei Mihnea, Kirk Prall
  • Patent number: 6597054
    Abstract: A configuration for a laser fuse bank is disclosed wherein the available space is more efficiently used. Fuses of graduated width and variable configuration are placed so as to minimize the average distance between fuses and maximize fuse density. Alternatively, a common source is added to a standard laser fuse structure such that it intersects the fuses and the number of available fuses is doubled.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: July 22, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Kirk Prall, Tod S. Stone, Paul S. Zagar
  • Patent number: 6586304
    Abstract: The invention includes several aspects related to semiconductor-on-insulator transistors, to memory and other DRAM circuitry and arrays, to transistor gate arrays, and to methods of fabricating such constructions. In one aspect, a semiconductor-on-insulator transistor includes, a) an insulator layer; b) a layer of semiconductor material over the insulator layer; c) a transistor gate provided within the semiconductor material layer; and d) an outer elevation source/drain diffusion region and an inner elevation diffusion region provided within the semiconductor material layer in operable proximity to the transistor gate. In another aspect, DRAM circuitry includes a plurality of memory cells not requiring sequential access, at least a portion of the plurality having more than two memory cells for a single bit line contact.
    Type: Grant
    Filed: June 24, 1997
    Date of Patent: July 1, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Kirk Prall
  • Patent number: 6472756
    Abstract: A method is provided for forming a contact in an integrated circuit by chemical vapor deposition (CVD). In one embodiment, a titanium precursor and a silicon precursor are contacted in the presence of hydrogen, to form titanium silicide. In another embodiment, a titanium precursor contacts silicon to form to form titanium silicide.
    Type: Grant
    Filed: February 21, 2001
    Date of Patent: October 29, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Trung T. Doan, Gurtej Singh Sandhu, Kirk Prall, Sujit Sharan
  • Patent number: 6469389
    Abstract: Within an integrated circuit, a contact plug with a height not extending above the level of the gate/wordline nitride is nonetheless provided with a relatively large contact area or landing pad, significantly larger than the source/drain region to which the contact plug is electrically connected. Methods for producing the inventive contact plug include (1) use of a nitride facet etch, either (a) during a nitride spacer formation etch or (b) during a BPSG etch; (2) using at least one of (a) an isotropic photoresist etch or partial descum to narrow BPSG spacers above the gate/wordline nitride, and (b) a nitride step etch to etch the shoulder area of the gate/wordline nitride exposed by a BPSG etch; and (3) polishing a BPSG layer down to the top of a gate/wordline nitride before any doped polysilicon plug fill, masking for BPSG etch and performing a BPSG etch, etching the photoresist layer through a partial descum, and etching the shoulder area of the gate/wordline nitride exposed thereby.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: October 22, 2002
    Assignee: Micron Technolgy, Inc.
    Inventors: Werner Juengling, Kirk Prall, Gordon Haller, David Keller, Tyler Lowrey
  • Patent number: 6459610
    Abstract: The invention includes several aspects related to semiconductor-on-insulator transistors, to memory and other DRAM circuitry and arrays, to transistor gate arrays, and to methods of fabricating such constructions. In one aspect, a semiconductor-on-insulator transistor includes, a) an insulator layer; b) a layer of semiconductor material over the insulator layer; c) a transistor gate provided within the semiconductor material layer; and d) an outer elevation source/drain diffusion region and an inner elevation diffusion region provided within the semiconductor material layer in operable proximity to the transistor gate. In another aspect, DRAM circuitry includes a plurality of memory cells not requiring sequential access, at least a portion of the plurality having more than two memory cells for a single bit line contact.
    Type: Grant
    Filed: April 14, 1999
    Date of Patent: October 1, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Kirk Prall
  • Publication number: 20020127798
    Abstract: Methods and devices are disclosed which provide for memory devices having reduced memory cell square feature sizes. Such square feature sizes can permit large memory devices, on the order of a gigabyte or large, to be fabricated on one chip or die. The methods and devices disclosed, along with variations of them, utilize three dimensions as opposed to other memory devices which are fabricated in only two dimensions. Thus, the methods and devices disclosed, along with variations, contains substantially horizontal and vertical components.
    Type: Application
    Filed: March 8, 2001
    Publication date: September 12, 2002
    Inventor: Kirk Prall
  • Patent number: 6448656
    Abstract: A method of forming a connection is comprised of the steps of depositing a lower conductor. A dielectric layer is deposited on the lower conductor, with the dielectric layer having a lower surface adjacent to the lower conductor, and having an upper surface. An opening extending between the upper surface and the lower surface of the dielectric layer is formed. A conductive plug is deposited within the opening, with the plug having an upper surface proximate the upper surface of the dielectric layer. The upper surface has an edge where the upper surface of the plug is adjacent to the dielectric layer. A recess is formed proximate to the edge of the upper surface of the plug, the recess extending into both the plug and the dielectric layer. Finally, an upper conductor is deposited on the upper surface of the dielectric layer and the upper surface of the plug. A connection thus formed is also disclosed.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: September 10, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Guy Blalock, Kirk Prall
  • Patent number: 6429526
    Abstract: A method of forming a connection is comprised of the steps of depositing a lower conductor. A dielectric layer is deposited on the lower conductor, with the dielectric layer having a lower surface adjacent to the lower conductor, and having an upper surface. An opening extending between the upper surface and the lower surface of the dielectric layer is formed. A conductive plug is deposited within the opening, with the plug having an upper surface proximate the upper surface of the dielectric layer. The upper surface has an edge where the upper surface of the plug is adjacent to the dielectric layer. A recess is formed proximate to the edge of the upper surface of the plug, the recess extending into both the plug and the dielectric layer. Finally, an upper conductor is deposited on the upper surface of the dielectric layer and the upper surface of the plug. A connection thus formed is also disclosed.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: August 6, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Guy Blalock, Kirk Prall, Fernando Gonzalez
  • Patent number: 6426287
    Abstract: A method of forming a connection is comprised of the steps of depositing a lower conductor. A dielectric layer is deposited on the lower conductor, with the dielectric layer having a lower surface adjacent to the lower conductor, and having an upper surface. An opening extending between the upper surface and the lower surface of the dielectric layer is formed. A conductive plug is deposited within the opening, with the plug having an upper surface proximate the upper surface of the dielectric layer. The upper surface has an edge where the upper surface of the plug is adjacent to the dielectric layer. A recess is formed proximate to the edge of the upper surface of the plug, the recess extending into both the plug and the dielectric layer. Finally, an upper conductor is deposited on the upper surface of the dielectric layer and the upper surface of the plug. A connection thus formed is also disclosed.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: July 30, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Guy Blalock, Kirk Prall, Fernando Gonzalez
  • Publication number: 20020093099
    Abstract: Within an integrated circuit, a contact plug with a height not extending above the level of the gate/wordline nitride is nonetheless provided with a relatively large contact area or landing pad, significantly larger than the source/drain region to which the contact plug is electrically connected. Methods for producing the inventive contact plug include (1) use of a nitride facet etch, either (a) during a nitride spacer formation etch or (b) during a BPSG etch; (2) using at least one of (a) an isotropic photoresist etch or partial descum to narrow BPSG spacers above the gate/wordline nitride, and (b) a nitride step etch to etch the shoulder area of the gate/wordline nitride exposed by a BPSG etch; and (3) polishing a BPSG layer down to the top of a gate/wordline nitride before any doped polysilicon plug fill, masking for BPSG etch and performing a BPSG etch, etching the photoresist layer through a partial descum, and etching the shoulder area of the gate/wordline nitride exposed thereby.
    Type: Application
    Filed: May 9, 2000
    Publication date: July 18, 2002
    Inventors: WERNER JUENGLING, KIRK PRALL, GORDON HALLER, DAVID KELLER, TYLER LOWREY
  • Patent number: 6404669
    Abstract: The present invention is directed to a memory cell which comprises a storage node, a switching device for controlling access to the storage node, and a diode between the switching device and the storage node. A method for controlling charge transfer to and from a storage node through a switching device is also disclosed.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: June 11, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Zhigiang Wu, Randhir PS Thakur, Alan Reinberg, Kirk Prall
  • Patent number: 6404008
    Abstract: The invention includes several aspects related to semiconductor-on-insulator transistors, to memory and other DRAM circuitry and arrays, to transistor gate arrays, and to methods of fabricating such constructions. In one aspect, a semiconductor-on-insulator transistor includes, a) an insulator layer; b) a layer of semiconductor material over the insulator layer; c) a transistor gate provided within the semiconductor material layer; and d) an outer elevation source/drain diffusion region and an inner elevation diffusion region provided within the semiconductor material layer in operable proximity to the transistor gate. In another aspect, DRAM circuitry includes a plurality of memory cells not requiring sequential access, at least a portion of the plurality having more than two memory cells for a single bit line contact.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: June 11, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Kirk Prall
  • Publication number: 20020048883
    Abstract: The invention includes several aspects related to semiconductor-on-insulator transistors, to memory and other DRAM circuitry and arrays, to transistor gate arrays, and to methods of fabricating such constructions. In one aspect, a semiconductor-on-insulator transistor includes, a) an insulator layer; b) a layer of semiconductor material over the insulator layer; c) a transistor gate provided within the semiconductor material layer; and d) an outer elevation source/drain diffusion region and an inner elevation diffusion region provided within the semiconductor material layer in operable proximity to the transistor gate. In another aspect, DRAM circuitry includes a plurality of memory cells not requiring sequential access, at least a portion of the plurality having more than two memory cells for a single bit line contact.
    Type: Application
    Filed: June 24, 1997
    Publication date: April 25, 2002
    Inventor: KIRK PRALL
  • Patent number: 6326250
    Abstract: In one aspect of the invention, a semiconductor processing method includes: a) providing a semiconductor substrate; b) defining a first conductivity type region and a second conductivity type region of the semiconductor substrate; c) providing a first transistor gate over the first type region which defines a first source area and a first drain area operatively adjacent thereto; d) providing a second transistor gate over the second type region which defines a second source area and a second drain area operatively adjacent thereto; and e) blanket implanting a conductivity enhancing dopant of the second conductivity type through the first source and drain areas of the first conductivity region and the second source and drain areas of the second conductivity region to provide second conductivity type regular LDD implant regions within the substrate operatively adjacent the first transistor gate and to provide second conductivity type halo implant regions within the substrate operatively adjacent the second trans
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: December 4, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Aftab Ahmad, Kirk Prall
  • Publication number: 20010040816
    Abstract: The present invention is directed to a memory cell which comprises a storage node, a switching device for controlling access to the storage node, and a diode between the switching device and the storage node. A method for controlling charge transfer to and from a storage node through a switching device is also disclosed.
    Type: Application
    Filed: December 18, 2000
    Publication date: November 15, 2001
    Inventors: Zhigiang (Jeff) Wu, Randhir PS Thakur, Alan Reinberg, Kirk Prall
  • Publication number: 20010039113
    Abstract: A method of forming a connection is comprised of the steps of depositing a lower conductor. A dielectric layer is deposited on the lower conductor, with the dielectric layer having a lower surface adjacent to the lower conductor, and having an upper surface. An opening extending between the upper surface and the lower surface of the dielectric layer is formed. A conductive plug is deposited within the opening, with the plug having an upper surface proximate the upper surface of the dielectric layer. The upper surface has an edge where the upper surface of the plug is adjacent to the dielectric layer. A recess is formed proximate to the edge of the upper surface of the plug, the recess extending into both the plug and the dielectric layer. Finally, an upper conductor is deposited on the upper surface of the dielectric layer and the upper surface of the plug. A connection thus formed is also disclosed.
    Type: Application
    Filed: July 11, 2001
    Publication date: November 8, 2001
    Inventors: Guy Blalock, Kirk Prall, Fernando Gonzalez
  • Publication number: 20010019893
    Abstract: This invention is a process for manufacturing a random access memory array. Each memory cell within the array which results from the process incorporates a stacked capacitor, a silicon nitride coated access transistor gate electrode, and a self-aligned high-aspect-ratio digit line contact having a tungsten plug which extends from the substrate to a metal interconnect structure located at a level above the stacked capacitor. The contact opening is lined with titanium metal which is in contact with the substrate, and with titanium nitride that is in contact with the plug. Both the titanium metal and the titanium nitride are deposited via chemical vapor deposition reactions.
    Type: Application
    Filed: April 10, 2001
    Publication date: September 6, 2001
    Inventors: Kirk Prall, Howard E. Rhodes, Sujit Sharan, Gurtel Sandhu, Philip J. Ireland
  • Patent number: 6277731
    Abstract: A method of forming a connection is comprised of the steps of depositing a lower conductor. A dielectric layer is deposited on the lower conductor, with the dielectric layer having a lower surface adjacent to the lower conductor, and having an upper surface. An opening extending between the upper surface and the lower surface of the dielectric layer is formed. A conductive plug is deposited within the opening, with the plug having an upper surface proximate the upper surface of the dielectric layer. The upper surface has an edge where the upper surface of the plug is adjacent to the dielectric layer. A recess is formed proximate to the edge of the upper surface of the plug, the recess extending into both the plug and the dielectric layer. Finally, an upper conductor is deposited on the upper surface of the dielectric layer and the upper surface of the plug. A connection thus formed is also disclosed.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: August 21, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Guy Blalock, Kirk Prall
  • Patent number: 6274897
    Abstract: A region is formed in a semiconductor substrate and extends beyond the substrate surface. First and second interconnects each having a predetermined thickness and a surface approximately parallel to the substrate surface are formed on the region. The first and second interconnects define a trench therebetween. A third interconnect is formed on the substrate. The thicknesses of the first and second interconnects are reduced a first amount to improve the aspect ratio of the trench, to improve the cross-sectional profile of the trench, or both. The thickness of the third strip is reduced a second amount. The second amount may be smaller than the first amount.
    Type: Grant
    Filed: June 24, 1999
    Date of Patent: August 14, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Guy Blalock, Scott Meikle, Sung Kim, Kirk Prall