Patents by Inventor Koichiro Tanaka

Koichiro Tanaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110304920
    Abstract: The present invention is to provide a laser irradiation technique for irradiating the irradiation surface with the laser beam having homogeneous intensity distribution using a cylindrical lens array without being affected by the intensity distribution of the original beam. A laser beam emitted from a laser oscillator is divided by two kinds of cylindrical lens arrays into a plurality of beams, which are two kinds of linear laser beams with their energy intensity distribution inverted each other, and the two kinds of linear laser beams are superposed in a minor-axis direction. This can form the linear laser beam having homogeneous intensity distribution on the irradiation surface.
    Type: Application
    Filed: August 24, 2011
    Publication date: December 15, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Koichiro TANAKA, Hirotada OISHI
  • Publication number: 20110300690
    Abstract: To provide a method of manufacturing a semiconductor device in which the space between semiconductor films transferred at plural locations is narrowed. A first bonding substrate having first projections is attached to a base substrate. Then, the first bonding substrate is separated at the first projections so that first semiconductor films are formed over the base substrate. Next, a second bonding substrate having second projections is attached to the base substrate so that the second projections are placed in regions different from regions where the first semiconductor films are formed. Subsequently, the second bonding substrate is separated at the second projections so that second semiconductor films are formed over the base substrate. In the second bonding substrate, the width of each second projection in a direction (a depth direction) perpendicular to the second bonding substrate is larger than the film thickness of each first semiconductor film formed first.
    Type: Application
    Filed: July 21, 2011
    Publication date: December 8, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa SHIMOMURA, Tatsuya MIZOI, Hidekazu MIYAIRI, Koichiro TANAKA
  • Patent number: 8071404
    Abstract: By using a first substrate which has a light-transmitting property and whose first face is provided with a light-absorbing layer, a mixture including an organic compound and an inorganic material is irradiated with light having a wavelength, which is absorbed by the inorganic material to heat the mixture, and thereby a film of the organic compound included in the mixture is formed on the first face of the first substrate. Then, the first face of the first substrate and a deposition surface of a second substrate are arranged to be adjacent to or in contact with each other, irradiation with light having a wavelength, which is absorbed by the light-absorbing layer is conducted from a second face side of the first substrate, to heat the organic compound, and thereby at least part of the organic compound is formed as a film on the deposition surface of the second substrate.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: December 6, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Koichiro Tanaka, Hisao Ikeda, Satoshi Seo
  • Patent number: 8064370
    Abstract: At a time T131, a wireless communication apparatus 11A determines to transmit a data packet, and then performs interference signal detection for a period TA. At a time T132, which precedes a time T133 at which the period TA has elapsed since the time T131, the wireless communication apparatus 11A detects a data packet d21 (an interference signal). At a time T134, at which a period TB has elapsed since the time T132 at which the interference signal has been detected, the wireless communication apparatus 11A starts transmitting a data packet d11 to a wireless communication apparatus 12A. At a time T136, the wireless communication apparatus 11A completes the transmission of the data packet d11.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: November 22, 2011
    Assignee: Panasonic Corporation
    Inventors: Naganori Shirakata, Shuya Hosokawa, Koji Imamura, Koichiro Tanaka, Kenji Miyanaga, Yoshio Urabe, Tsutomu Mukai
  • Publication number: 20110272385
    Abstract: An object of the present invention is to provide a method and a device for constantly setting the energy distribution of a laser beam on an irradiating face, and uniformly irradiating the laser beam to the entire irradiating face. Further, another object of the present invention is to provide a manufacturing method of a semiconductor device including this laser irradiating method in a process. Therefore, the present invention is characterized in that the shapes of plural laser beams on the irradiating face are formed by an optical system in an elliptical shape or a rectangular shape, and the plural laser beams are irradiated while the irradiating face is moved in a first direction, and the plural laser beams are irradiated while the irradiating fate is moved in a second direction and is moved in a direction reverse to the first direction.
    Type: Application
    Filed: July 19, 2011
    Publication date: November 10, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Koichiro TANAKA
  • Patent number: 8053269
    Abstract: To improve the use efficiency of materials and provide a technique of fabricating a display device by a simple process. The method includes the steps of providing a mask on a conductive layer, forming an insulating film over the conductive layer provided with the mask, removing the mask to form an insulating layer having an opening; and forming a conductive film in the opening so as to be in contact with the exposed conductive layer, whereby the conductive layer and the conductive film can be electrically connected through the insulating layer. The shape of the opening reflects the shape of the mask. A mask having a columnar shape (e.g., a prism, a cylinder, or a triangular prism), a needle shape, or the like can be used.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: November 8, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Koichiro Tanaka
  • Patent number: 8043969
    Abstract: A first layer is formed over a substrate, a light absorbing layer is formed over the first layer, and a layer having a light-transmitting property is formed over the light absorbing layer. The light absorbing layer is selectively irradiated with a laser beam via the layer having a light-transmitting property. When the light absorbing layer absorbs energy of the laser beam, due to emission of gas that is within the light absorbing layer, or sublimation, evaporation, or the like of the light absorbing layer, a part of the light absorbing layer and a part of the layer having a light-transmitting property in contact with the light absorbing layer are removed. By using the remaining part of the layer having a light-transmitting property or the remaining part of the light absorbing layer as a mask and etching the first layer, the first layer can be processed into a desired shape.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: October 25, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Koichiro Tanaka, Hironobu Shoji, Shunpei Yamazaki
  • Patent number: 8044372
    Abstract: Continuous wave laser apparatus with enhanced processing efficiency is provided as well as a method of manufacturing a semiconductor device using the laser apparatus. The laser apparatus has: a laser oscillator; a unit for rotating a process object; a unit for moving the center of the rotation along a straight line; and an optical system for processing laser light that is outputted from the laser oscillator to irradiate with the laser light a certain region within the moving range of the process object. The laser apparatus is characterized in that the certain region is on a line extended from the straight line and that the position at which the certain region overlaps the process object is moved by rotating the process object while moving the center of the rotation along the straight line.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: October 25, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Koichiro Tanaka, Hidekazu Miyairi, Aiko Shiga, Akihisa Shimomura, Mai Akiba
  • Patent number: 8045271
    Abstract: The present invention is to provide a laser irradiation technique for irradiating the irradiation surface with the laser beam having homogeneous intensity distribution using a cylindrical lens array without being affected by the intensity distribution of the original beam. A laser beam emitted from a laser oscillator is divided by two kinds of cylindrical lens arrays into a plurality of beams, which are two kinds of linear laser beams with their energy intensity distribution inverted each other, and the two kinds of linear laser beams are superposed in a minor-axis direction. This can form the linear laser beam having homogeneous intensity distribution on the irradiation surface.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: October 25, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koichiro Tanaka, Hirotada Oishi
  • Publication number: 20110255172
    Abstract: A deflecting mirror which deflects a laser beam emitted from a laser oscillator, a transfer lens, a cylindrical lens array which divides the laser beam having passed through the transfer lens into a plurality of laser beams, and a condensing lens which superposes the laser beams formed in the cylindrical lens array are included. The following formula is satisfied: 1/f=1/(a+b)+1/c, when: “a” is a distance between an emission opening of the laser oscillator and the deflecting mirror; “b” is a distance between the deflecting mirror and the transfer lens; “c” is a distance between the transfer lens and an incidence plane of the cylindrical lens array; and “f” is a focal length of the transfer lens.
    Type: Application
    Filed: June 29, 2011
    Publication date: October 20, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Koichiro TANAKA, Hirotada OISHI
  • Publication number: 20110245958
    Abstract: To provide a manufacturing method of a semiconductor device using an SOI substrate, by which mobility can be improved. A plurality of semiconductor films formed using a plurality of bond substrates (semiconductor substrates) are bonded to one base substrate (support substrate). At least one of the plurality of bond substrates has a crystal plane orientation different from that of the other bond substrates. Accordingly, at least one of the plurality of semiconductor films formed over one base substrate has a crystal plane orientation different from that of the other semiconductor films. The crystal plane orientation of the semiconductor film is determined in accordance with the polarity of a semiconductor element formed using the semiconductor film. For example, an n-channel element in which electrons are majority carriers is formed using a semiconductor film having a face {100}, and a p-channel element in which holes are majority carriers is formed using a semiconductor film having a face {110}.
    Type: Application
    Filed: June 16, 2011
    Publication date: October 6, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Koichiro TANAKA
  • Patent number: 8026149
    Abstract: To provide a laser irradiation apparatus which performs alignment of an irradiated object and emits a laser beam precisely, a laser irradiation method, and a manufacturing method of a TFT with high reliability with the use of a method for precisely targeting a desired irradiation position of the laser beam. A substrate with marker is mounted on a stage formed using a material which transmits infrared light; a marker, which is provided in the substrate with marker mounted on the stage, is detected using a camera capable of sensing infrared light, and a position of the stage is controlled; a laser beam is emitted from a laser oscillator; the laser beam emitted from the laser oscillator is processed into a linear shape by an optical system, and the substrate with marker mounted on the stage is irradiated with the laser beam.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: September 27, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koichiro Tanaka, Takatsugu Omata
  • Publication number: 20110230037
    Abstract: The present invention provides a beam homogenizer being able to form a rectangular beam spot having homogeneous energy distribution in a direction of its major axis without using the optical lens requiring to be manufactured with high accuracy. In addition, the present invention provides a laser irradiation apparatus being able to irradiate the laser beam having homogeneous energy distribution in a direction of its major axis. Furthermore, the present invention provides a method for manufacturing a semiconductor device being able to enhance crystallinity in the surface of the substrate and to manufacture TFT with a high operating characteristic. The beam homogenizer, one of the present invention, is to shape the beam spot on the surface to be irradiated into a rectangular spot having an aspect ratio of 10 or more, preferably 100 or more, and comprises an optical waveguide for homogenizing the energy distribution of the rectangular beam spot in the direction of its major axis.
    Type: Application
    Filed: May 26, 2011
    Publication date: September 22, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Koichiro TANAKA, Tomoaki MORIWAKA
  • Patent number: 8022380
    Abstract: The present invention is to provide a laser irradiation method for performing homogeneous laser irradiation to the irradiation object even when the thickness of the irradiation object is not even. In the case of irradiating the irradiation object having uneven thickness, the laser irradiation is performed while keeping the distance between the irradiation object and the lens for condensing the laser beam on the surface of the irradiation object constant by using an autofocusing mechanism. In particular, when the irradiation object is irradiated with the laser beam by moving the irradiation object relative to the laser beam in the first direction and the second direction of the beam spot formed on the irradiation surface, the distance between the irradiation object and the lens is controlled by the autofocusing mechanism before the irradiation object is moved in the first and second directions.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: September 20, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koichiro Tanaka, Yoshiaki Yamamoto
  • Patent number: 8023599
    Abstract: Interfering signals coming at random timings from different radio stations are identified. In order to attain this, a method for storing the characterizing quantity of an interfering signal included in a received signal includes calculating the characterizing quantity of the received signal, determining a probability that a desired signal is included in the received signal, determining that the received signal is an interfering signal when determining that there is no probability that the desired signal is included in the received signal, and storing the characterizing quantity of the received signal as an interfering signal characterizing quantity when it is determined at the received signal determination step that there is no probability that the desired signal is included in the received signal.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: September 20, 2011
    Assignee: Panasonic Corporation
    Inventors: Koichiro Tanaka, Naganori Shirakata, Yoshio Urabe, Tsutomu Mukai, Kenji Miyanaga, Koji Imamura, Shuya Hosokawa
  • Patent number: 8003958
    Abstract: There is proposed an apparatus for doping a material to be doped by generating plasma (ions) and accelerating it by a high voltage to form an ion current is proposed, which is particularly suitable for processing a substrate having a large area. The ion current is formed to have a linear sectional configuration, and doping is performed by moving a material to be doped in a direction substantially perpendicular to the longitudinal direction of a section of the ion current.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: August 23, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toshiji Hamatani, Koichiro Tanaka
  • Patent number: 8003499
    Abstract: An object of the present invention is to provide a method and a device for constantly setting the energy distribution of a laser beam on an irradiating face, and uniformly irradiating the laser beam to the entire irradiating face. Further, another object of the present invention is to provide a manufacturing method of a semiconductor device including this laser irradiating method in a process. Therefore, the present invention is characterized in that the shapes of plural laser beams on the irradiating face are formed by an optical system in an elliptical shape or a rectangular shape, and the plural laser beams are irradiated while the irradiating face is moved in a first direction, and the plural laser beams are irradiated while the irradiating face is moved in a second direction and is moved in a direction reverse to the first direction.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: August 23, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Koichiro Tanaka
  • Publication number: 20110201183
    Abstract: There is provided a method for manufacturing a crystalline semiconductor film. An insulating film is formed over a substrate; an amorphous semiconductor film is formed over the insulating film; a cap film is formed over the amorphous semiconductor film; the amorphous semiconductor film is scanned and irradiated with a continuous wave laser beam or a laser beam with a repetition rate of greater than or equal to 10 MHz, through the cap film; and the amorphous semiconductor film is melted and crystallized At this time, an energy distribution in a length direction and a width direction in a laser beam spot is a Gaussian distribution, and the amorphous semiconductor film is scanned with the laser beam so as to be irradiated with the laser beam for a period of greater than or equal to 5 microseconds and less than or equal to 100 microseconds per region.
    Type: Application
    Filed: April 22, 2011
    Publication date: August 18, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Tomoaki MORIWAKA, Koichiro TANAKA
  • Patent number: 8000016
    Abstract: A deflecting mirror which deflects a laser beam emitted from a laser oscillator, a transfer lens, a cylindrical lens array which divides the laser beam having passed through the transfer lens into a plurality of laser beams, and a condensing lens which superposes the laser beams formed in the cylindrical lens array are included. The following formula is satisfied: 1/f=1/(a+b)+1/c, when: “a” is a distance between an emission opening of the laser oscillator and the deflecting mirror; “b” is a distance between the deflecting mirror and the transfer lens; “c” is a distance between the transfer lens and an incidence plane of the cylindrical lens array; and “f” is a focal length of the transfer lens.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: August 16, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koichiro Tanaka, Hirotada Oishi
  • Publication number: 20110193761
    Abstract: An antenna apparatus includes an antenna element and a parasitic element provided on a first surface of a dielectric substrate, and an antenna element and a parasitic element provided on a second surface of the dielectric substrate. Each of the parasitic elements is provided at a position away from the antenna elements by a distance of one-fourth of an operating wavelength ? in communication.
    Type: Application
    Filed: October 7, 2009
    Publication date: August 11, 2011
    Inventors: Sotaro Shinkai, Wataru Noguchi, Hiroyuki Yurugi, Akihiko Shiotsuki, Masahiko Nagoshi, Koichiro Tanaka