Patents by Inventor Koji Nii

Koji Nii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8018785
    Abstract: A driver power supply circuit stepping down a power supply voltage is arranged at a power supply node of a word line driver. The driver power supply circuit includes a non-silicide resistance element of N+ doped polycrystalline silicon, and a pull-down circuit lowering a voltage level of the driver power supply node. The pull-down circuit includes a pull-down transistor having the same threshold voltage characteristics as a memory cell transistor pulling down a voltage level of the driver power supply node, and a gate control circuit adjusting at least a gate voltage of the pull-down transistor. The gate control circuit corrects the gate potential of the pull-down transistor in a manner linked to variations in threshold voltage of the memory cell transistor.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: September 13, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Makoto Yabuuchi, Koji Nii
  • Publication number: 20110216615
    Abstract: First and second read word lines are provided in each set made of two adjacent rows. First, second, third, and fourth read bit lines are provided in each column. Each of the first and second read word lines is connected to memory cells in a corresponding one of the sets. Each of the first and third read bit lines is connected to a memory cell in one row in each of the sets, out of memory cells in a corresponding one of the columns. Each of the second and fourth read bit lines is connected to a memory cell in the other row in each of the sets, out of the memory cells in the corresponding one of the columns.
    Type: Application
    Filed: May 19, 2011
    Publication date: September 8, 2011
    Applicant: Renesas Electronics Corporation
    Inventor: Koji NII
  • Patent number: 8009500
    Abstract: Cell power supply lines are arranged for memory cell columns, and adjust impedances or voltage levels of the cell power supply lines according to the voltage levels of bit lines in the corresponding columns, respectively. In the data write operation, the cell power supply line is forced into a floating state according to the bit line potential on a selected column and has the voltage level changed, and a latching capability of a selected memory cell is reduced to write data fast. Even with a low power supply voltage, a static semiconductor memory device that can stably perform write and read of data is implemented.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: August 30, 2011
    Assignee: Renesas Electronics Corportion
    Inventors: Koji Nii, Shigeki Obayashi, Hiroshi Makino, Koichiro Ishibashi, Hirofumi Shinohara
  • Publication number: 20110193173
    Abstract: There are provided a method of manufacturing a semiconductor device which achieves a reduction in implantation masks, and such a semiconductor device. By implanting boron into NMOS regions using a resist mask and another resist mask as the implantation masks, p-type impurity regions serving as the halo regions of access transistors and drive transistors are formed. By further implanting phosphorus or arsenic into a PMOS region using another resist mask as the implantation mask, n-type impurity regions serving as the halo regions of load transistors are formed.
    Type: Application
    Filed: February 2, 2011
    Publication date: August 11, 2011
    Inventors: Koji NII, Motoshige Igarashi
  • Publication number: 20110157965
    Abstract: To improve reliability of a semiconductor device having an SRAM. The semiconductor device has a memory cell including six n-channel type transistors and two p-channel type transistors formed over a silicon substrate. Over the silicon substrate, a first p well, a first n well, a second p well, a second n well, and a third p well are arranged in this order when viewed in a row direction. First and second positive-phase access transistors are disposed in the first p well, first and second driver transistors are disposed in the second p well, and first and second negative-phase access transistors are arranged in the third p well.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 30, 2011
    Inventor: Koji NII
  • Patent number: 7969811
    Abstract: First and second read word lines are provided in each set made of two adjacent rows. First, second, third, and fourth read bit lines are provided in each column. Each of the first and second read word lines is connected to memory cells in a corresponding one of the sets. Each of the first and third read bit lines is connected to a memory cell in one row in each of the sets, out of memory cells in a corresponding one of the columns. Each of the second and fourth read bit lines is connected to a memory cell in the other row in each of the sets, out of the memory cells in the corresponding one of the columns.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: June 28, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Koji Nii
  • Patent number: 7969766
    Abstract: In a multiport SRAM memory cell of the present invention, an access transistor of a first port is disposed in a p-type well, and an access transistor of a second port is disposed in a p-type well. The gates of all of transistors disposed in a memory cell extend in the same direction. With the configuration, a semiconductor memory device having a low-power consumption type SRAM memory cell with an increased margin of variations in manufacturing, by which a bit line can be shortened in a multiport SRAM memory cell or an associative memory, can be obtained.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: June 28, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Koji Nii
  • Publication number: 20110134706
    Abstract: A multiple-port semiconductor memory device capable of achieving a smaller circuit area is provided. A power supply line supplying an operation voltage of a memory cell is formed in an identical metal interconnection layer where word lines are formed and it is provided adjacent to and between corresponding first word line and second word line. Then, for example, when the same memory cell row is accessed, a voltage level of the power supply line is raised by a coupling capacitance of the word lines. Thus, even in identical-row-access, static noise margin in identical-row-access can be maintained to be as great as that in different-row-access. Therefore, for example, even when a size or the like of a driver transistor is not made larger, deterioration of static noise margin can be suppressed and a circuit area can be made smaller.
    Type: Application
    Filed: February 14, 2011
    Publication date: June 9, 2011
    Applicant: RENESAS TECHNOLOGY CORPORATION
    Inventor: Koji NII
  • Publication number: 20110032750
    Abstract: A driver power supply circuit stepping down a power supply voltage is arranged at a power supply node of a word line driver. The driver power supply circuit includes a non-silicide resistance element of N+ doped polycrystalline silicon, and a pull-down circuit lowering a voltage level of the driver power supply node. The pull-down circuit includes a pull-down transistor having the same threshold voltage characteristics as a memory cell transistor pulling down a voltage level of the driver power supply node, and a gate control circuit adjusting at least a gate voltage of the pull-down transistor. The gate control circuit corrects the gate potential of the pull-down transistor in a manner linked to variations in threshold voltage of the memory cell transistor.
    Type: Application
    Filed: October 21, 2010
    Publication date: February 10, 2011
    Applicant: Renesas Electronics Corporation
    Inventors: Makoto Yabuuchi, Koji Nii
  • Patent number: 7876625
    Abstract: A driver power supply circuit stepping down a power supply voltage is arranged at a power supply node of a word line driver. The driver power supply circuit includes a non-silicide resistance element of N+ doped polycrystalline silicon, and a pull-down circuit lowering a voltage level of the driver power supply node. The pull-down circuit includes a pull-down transistor having the same threshold voltage characteristics as a memory cell transistor pulling down a voltage level of the driver power supply node, and a gate control circuit adjusting at least a gate voltage of the pull-down transistor. The gate control circuit corrects the gate potential of the pull-down transistor in a manner linked to variations in threshold voltage of the memory cell transistor.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: January 25, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Makoto Yabuuchi, Koji Nii
  • Publication number: 20100216284
    Abstract: In a multiport SRAM memory cell of the present invention, an access transistor of a first port is disposed in a p-type well, and an access transistor of a second port is disposed in a p-type well. The gates of all of transistors disposed in a memory cell extend in the same direction. With the configuration, a semiconductor memory device having a low-power consumption type SRAM memory cell with an increased margin of variations in manufacturing, by which a bit line can be shortened in a multiport SRAM memory cell or an associative memory, can be obtained.
    Type: Application
    Filed: May 3, 2010
    Publication date: August 26, 2010
    Applicant: Renesas Technology Corp.
    Inventor: Koji NII
  • Publication number: 20100188887
    Abstract: The invention provides a semiconductor integrated circuit device provided with an SRAM that satisfies the requirements for both the SNM and the write margin with a low supply voltage. The semiconductor integrated circuit device include: multiple static memory cells provided in correspondence with multiple word lines and multiple complimentary bit lines; multiple memory cell power supply lines that each supply an operational voltage to each of the multiple memory cells connected to the multiple complimentary bit lines each; multiple power supply circuits comprised of resistive units that each supply a power supply voltage to the memory cell power supply lines each; and a pre-charge circuit that supplies a pre-charge voltage corresponding to the power supply voltage to the complimentary bit lines, wherein the memory cell power supply lines are made to have coupling capacitances to thereby transmit a write signal on corresponding complimentary bit lines.
    Type: Application
    Filed: March 29, 2010
    Publication date: July 29, 2010
    Inventors: Noriaki Maeda, Yoshihiro Shinozaki, Masanao Yamaoka, Yasuhisa Shimazaki, Masanori Isoda, Koji Nii
  • Patent number: 7738285
    Abstract: In a multiport SRAM memory cell of the present invention, an access transistor of a first port is disposed in a p-type well, and an access transistor of a second port is disposed in a p-type well. The gates of all of transistors disposed in a memory cell extend in the same direction. With the configuration, a semiconductor memory device having a low-power consumption type SRAM memory cell with an increased margin of variations in manufacturing, by which a bit line can be shortened in a multiport SRAM memory cell or an associative memory, can be obtained.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: June 15, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Koji Nii
  • Patent number: 7675122
    Abstract: A contact connected to a word line is formed on a gate electrode of an access transistor of an SRAM cell. The contact passes through an element isolation insulating film to reach an SOI layer. A body region of a driver transistor and that of the access transistor are electrically connected with each other through the SOI layer located under the element isolation insulating film. Therefore, the access transistor is in a DTMOS structure having the gate electrode connected with the body region through the contact, which in turn is also electrically connected to the body region of the driver transistor. Thus, operations can be stabilized while suppressing increase of an area for forming the SRAM cell.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: March 9, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Yuuichi Hirano, Takashi Ipposhi, Shigeto Maegawa, Koji Nii
  • Publication number: 20090323398
    Abstract: A driver power supply circuit stepping down a power supply voltage is arranged at a power supply node of a word line driver. The driver power supply circuit includes a non-silicide resistance element of N+ doped polycrystalline silicon, and a pull-down circuit lowering a voltage level of the driver power supply node. The pull-down circuit includes a pull-down transistor having the same threshold voltage characteristics as a memory cell transistor pulling down a voltage level of the driver power supply node, and a gate control circuit adjusting at least a gate voltage of the pull-down transistor. The gate control circuit corrects the gate potential of the pull-down transistor in a manner linked to variations in threshold voltage of the memory cell transistor.
    Type: Application
    Filed: September 8, 2009
    Publication date: December 31, 2009
    Applicant: RENESAS TECHNOLOGY CORP
    Inventors: Makoto Yabuuchi, Koji Nii
  • Publication number: 20090268531
    Abstract: A level shift element adjusting a voltage level at the time of selection of a word line according to fluctuations in threshold voltage of a memory cell transistor is arranged for each word line. This level shift element lowers a driver power supply voltage, and transmits the level-shifted voltage onto a selected word line. The level shift element can be replaced with a pull-down element for pulling down the word line voltage according to the threshold voltage level of the memory cell transistor. In either case, the selected word line voltage level can be adjusted according to the fluctuations in threshold voltage of the memory cell transistor without using another power supply system. Thus, the power supply circuitry is not complicated, and it is possible to achieve a semiconductor memory device that can stably read and write data even with a low power supply voltage.
    Type: Application
    Filed: June 25, 2009
    Publication date: October 29, 2009
    Applicant: Renesas Technology Corp.
    Inventors: Koji Nii, Shigeki Ohbayashi, Yasumasa Tsukamoto, Makoto Yabuuchi
  • Patent number: 7602654
    Abstract: A driver power supply circuit stepping down a power supply voltage is arranged at a power supply node of a word line driver. The driver power supply circuit includes a non-silicide resistance element of N+ doped polycrystalline silicon, and a pull-down circuit lowering a voltage level of the driver power supply node. The pull-down circuit includes a pull-down transistor having the same threshold voltage characteristics as a memory cell transistor pulling down a voltage level of the driver power supply node, and a gate control circuit adjusting at least a gate voltage of the pull-down transistor. The gate control circuit corrects the gate potential of the pull-down transistor in a manner linked to variations in threshold voltage of the memory cell transistor.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: October 13, 2009
    Assignee: Renesas Technology Corporation
    Inventors: Makoto Yabuuchi, Koji Nii
  • Patent number: 7599214
    Abstract: Source contacts of driver transistors are short-circuited through the use of an internal metal line within a memory cell. This metal line is isolated from memory cells in an adjacent column and extends in a zigzag form in a direction of the columns of memory cells. Individual lines for transmitting the source voltage of driver transistors can be provided for each column, and the source voltage of driver transistors can be adjusted also in units of memory cell columns in the structure of single port memory cell.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: October 6, 2009
    Assignee: Renesas Technology Corp.
    Inventor: Koji Nii
  • Publication number: 20090244950
    Abstract: First and second read word lines are provided in each set made of two adjacent rows. First, second, third, and fourth read bit lines are provided in each column. Each of the first and second read word lines is connected to memory cells in a corresponding one of the sets. Each of the first and third read bit lines is connected to a memory cell in one row in each of the sets, out of memory cells in a corresponding one of the columns. Each of the second and fourth read bit lines is connected to a memory cell in the other row in each of the sets, out of the memory cells in the corresponding one of the columns.
    Type: Application
    Filed: March 13, 2009
    Publication date: October 1, 2009
    Inventor: Koji NII
  • Patent number: RE41638
    Abstract: A semiconductor memory having a memory cell structure capable of reducing soft error without complicating a circuit configuration. Specifically, an inverter (I1) consists of a NMOS transistor (N1) and a PMOS transistor (P1), and an inverter (I2) consists of a NMOS transistor (N2) and a PMOS transistor (P2). The inverters (I1, I2) are subjected to cross section. The NMOS transistor (N1) is formed within a P well region (PW0), and the NMOS transistor (N2) is formed within a P well region (PW1). The P well regions (PW0, PW1) are oppositely disposed with an N well region (NW) interposed therebetween.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: September 7, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Koji Nii