Patents by Inventor Kotaro Hayashi

Kotaro Hayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8574416
    Abstract: A method for producing an exhaust pipe includes electrocoating a surface of a metal base material with a paint to form a coat film. The paint includes inorganic glass particles and an electrocoating resin. The coat film is heated to a first temperature that is not lower than a burning-out temperature of the electrocoating resin. The coat film is heated, after heating the coat film to the first temperature, to a second temperature that is not lower than a softening point of the inorganic glass particles to produce the exhaust pipe which includes the metal base material and a surface coating layer formed on the surface of the metal base material.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: November 5, 2013
    Assignee: Ibiden Co., Ltd.
    Inventors: Kotaro Hayashi, Takumi Domae, Kenzo Saiki
  • Patent number: 8539755
    Abstract: Particles smaller than 50 nanometers emitted from an internal combustion engine, and serving as nuclei for forming PM (particulate matter), are removed to decrease the number of PM particles that are emitted to atmosphere. High efficiency filters are provided in passages that feed fluids into the combustion chamber, e.g., intake air, fuel and engine oil, in order to remove particles smaller than 50 nanometers serving as nuclei for forming PM.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: September 24, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kotaro Hayashi, Tetsuya Yamashita
  • Publication number: 20130068339
    Abstract: An exhaust pipe includes a metal base material and a surface coating layer formed on a surface of the metal base material. The surface coating layer contains an inorganic glass base material and has a concave portion and a convex portion on a surface of the surface coating layer. The concave portion is lower than a first reference surface. The first reference surface has an average height of the surface of the surface coating layer. The convex portion is located on a peripheral edge portion of the concave portion and surrounds the concave portion. The convex portion is higher than the first reference surface.
    Type: Application
    Filed: March 15, 2012
    Publication date: March 21, 2013
    Applicant: IBIDEN CO., LTD.
    Inventors: Kotaro HAYASHI, Takumi Domae, Kenzo Saiki
  • Publication number: 20130022511
    Abstract: PROBLEM TO BE SOLVED: To provide an exhaust purifying catalyst capable of efficiently purifying CO over a wide range of temperatures including a low temperature. MEANS TO SOLVE THE PROBLEM: An exhaust purifying apparatus of an internal combustion engine, comprising a CO oxidation catalyst disposed in the exhaust flow passage of an internal combustion engine and capable of oxidizing and thereby purifying CO in the exhaust, an HC adsorbent material for adsorbing HC in the exhaust, and an NOx adsorbent material for adsorbing NOx in the exhaust, these adsorbent materials being located on the upstream side in the exhaust flow direction with respect to the CO oxidation catalyst and disposed in order from the upstream, wherein the CO oxidation catalyst contains Pd and CeO2 and the amount of Pd supported is from 0.01 to 50 mass % based on CeO2.
    Type: Application
    Filed: March 29, 2011
    Publication date: January 24, 2013
    Inventors: Kotaro Hayashi, Satoshi Nagao, Hideaki Suzuki
  • Patent number: 8307639
    Abstract: An SOx trap catalyst able to trap SOx contained in the exhaust gas is arranged in an engine exhaust passage upstream of an NOx storing catalyst in an internal combustion engine. When the SOx trap rate of the SOx trap catalyst falls, fuel is added in the exhaust gas flowing into the SOx trap catalyst to form in the SOx trap catalyst a region in which an air-fuel ratio becomes locally rich. SOx released from the SOx trap catalyst in this region can be trapped in the SOx trap catalyst at the downstream side once again without flowing out from the downstream end of the SOx trap catalyst.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: November 13, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiromasa Nishioka, Shinya Hirota, Kotaro Hayashi, Takamitsu Asanuma, Kohei Yoshida, Hiroshi Otsuki
  • Patent number: 8307638
    Abstract: An object of the invention is to recover the capability of an exhaust gas purification apparatus provided in an exhaust passage of an internal combustion engine with improved reliability. According to the invention there are provided recovery control execution unit for executing a recovery control in which the temperature of the exhaust gas purification apparatus is raised by supply of reducing agent to a precatalyst to thereby recover the capability of the exhaust gas purification apparatus and prohibition range setting unit for setting a recovery control prohibition range that is an operation range of the internal combustion engine in which execution of the recovery control by the recovery control execution unit is prohibited. The higher the degree of deterioration of the precatalyst is, the higher the maximum values of the engine torque and the engine revolution number in the recovery control prohibition range are set to be.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: November 13, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Nobumoto Ohashi, Atsushi Hayashi, Masahide Iida, Kotaro Hayashi
  • Patent number: 8276369
    Abstract: In the present exhaust purification system of an internal combustion engine, a particulate filter is arranged downstream of an NOx storage/reduction catalyst device and an S trap device is arranged upstream of the NOx storage/reduction catalyst device. A first fuel supplying device for supplying additional fuel for regeneration of the particulate filter to the exhaust system upstream of the S trap device or into the cylinder is provided. An amount of the additional fuel supplied by the first fuel supplying device is controlled to make the S trap device not release SOx. A second fuel supplying device is provided in the exhaust system between the NOx storage/reduction catalyst device and the particulate filter to make up for a deficiency of the additional fuel supplied by the first fuel supplying device in the regeneration treatment of the particulate filter.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: October 2, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiromasa Nishioka, Shinya Hirota, Kotaro Hayashi, Takamitsu Asanuma, Kohei Yoshida, Hiroshi Otsuki
  • Publication number: 20120234685
    Abstract: A method for producing an exhaust pipe includes electrocoating a surface of a metal base material with a paint to form a coat film. The paint includes inorganic glass particles and an electrocoating resin. The coat film is heated to a first temperature that is not lower than a burning-out temperature of the electrocoating resin. The coat film is heated, after heating the coat film to the first temperature, to a second temperature that is not lower than a softening point of the inorganic glass particles to produce the exhaust pipe which includes the metal base material and a surface coating layer formed on the surface of the metal base material.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 20, 2012
    Applicant: IBIDEN CO., LTD.
    Inventors: Kotaro HAYASHI, Takumi Domae, Kenzo Saiki
  • Publication number: 20120234684
    Abstract: A paint composition for heat releasing products includes inorganic glass particles and an organic binder. The organic binder includes an electrocoating resin. The paint composition is to be applied to a base material made of a metal. The electrocoating resin preferably has a weight ratio of from about 1.0 to about 3.5 based on a weight of the inorganic glass particles. The paint composition preferably further includes inorganic particles.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 20, 2012
    Applicant: IBIDEN CO., LTD.
    Inventors: Kotaro Hayashi, Takumi Domae, Kenzo Saiki
  • Patent number: 8252374
    Abstract: To provide a particulate matter purifying device which is capable of providing excessive deposition of particulate matter. In the particulate matter purifying device, a catalyst element 11 is carried on a porous filter substrate 10 through which an exhaust gas passes. The particulate matter purifying device traps particulate matter contained in the exhaust gas, and oxidizing the trapped particulate matter to remove. This particulate matter purifying device is characterized in that active oxygen producing fine particles 12 are carried on a surface of the filter substrate 10 between the catalyst elements 11. Therefore, the particulate matter is partially damaged by the active oxygen produced by the active oxygen producing fine particles 12. Consequently, oxidization of the particulate matter is promoted so that deposition of the particulate matter is prevented or minimized.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: August 28, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichi Takeshima, Kotaro Hayashi, Kohei Yoshida, Atsushi Hayashi
  • Patent number: 8161794
    Abstract: A metal or metal compound able to trap a sulfur component in exhaust gas is arranged in a flow passage of exhaust gas in an internal combustion engine. When the amount of sulfur component trapped in the metal or metal compound increases over the passage of time, a property of the metal or metal compound which changes along with the increase in the amount of trapped sulfur component is measured and the sulfur component in the gas is detected from the measured property.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: April 24, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Otsuki, Takamitsu Asanuma, Kohei Yoshida, Hiromasa Nishioka, Shinya Hirota, Kotaro Hayashi
  • Patent number: 8104271
    Abstract: An SOX trap catalyst (11) in which at least one of an alkali metal and alkali earth metal is carried diffused is arranged in an exhaust passage of an internal combustion engine. By holding the temperature of the SOX trap catalyst (11) during engine operation at the temperature where a nitrate of the at least one of the alkali metal and alkali earth metal becomes the melted state, a nitrate movement and coagulation action where the nitrate in the SOX trap catalyst (11) moves to and coagulates at the surface of the SOX trap catalyst (11) is promoted. Due to this nitrate movement and coagulation action, SOX is removed while restoring the SOX trap rate.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: January 31, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kohei Yoshida, Kotaro Hayashi, Shinya Hirota, Takamitsu Asanuma, Hiromasa Nishioka, Hiroshi Otsuki
  • Patent number: 8104266
    Abstract: In an internal combustion engine, an SOx sensor (16) having a sensor part (53, 60) trapping the SOx contained in the exhaust gas and able to detect the amount of SOx trapped at the sensor part (53, 60) from a change of property of the sensor part (53, 60) is arranged in the engine exhaust passage upstream of the NOx storing catalyst (14). When estimating the amount of SOx stored in the NOx storing catalyst (14) from the amount of SOx trapped at the sensor part (53, 60), deviation of the estimated value of the amount of stored SOx arising due to the difference between the SOx trapping rate of the sensor part (53, 60) and the SOx trapping rate of the NOx storing catalyst (14) is corrected.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: January 31, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Otsuki, Takamitsu Asanuma, Kohei Yoshida, Hiromasa Nishioka, Shinya Hirota, Kotaro Hayashi
  • Patent number: 8047063
    Abstract: In an internal combustion engine, a sulfur detection sample gas is generated in a sample gas generation chamber by fuel of an amount smaller than the amount of fuel fed to a combustion chamber and proportional to the amount of fuel fed to the combustion chamber. An SOx sensor having a sensor part trapping the sulfur contained in the sample gas and capable of detecting the amount of sulfur trapped in the sensor part from the property changes of the sensor part is provided. The amount of SOx that flows into the catalyst is estimated from the output value-of this SOx sensor.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: November 1, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinya Hirota, Takamitsu Asanuma, Kohei Yoshida, Hiromasa Nishioka, Kotaro Hayashi, Hiroshi Otsuki
  • Patent number: 8033100
    Abstract: An internal combustion engine wherein an SOX trap catalyst (11) able to trap SOX contained in exhaust gas is arranged in an engine exhaust passage upstream of an NOX storing catalyst (12). When the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst (11) is switched from lean to rich to make the NOX storing catalyst (12) release the NOX, if the temperature of the SOX trap catalyst (11) is the SOX release lower limit temperature or more, rich processing making the air-fuel ratio of the exhaust gas flowing into the SOX trap catalyst (11) rich for making the NOX storing catalyst (12) release NOX is prohibited.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: October 11, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kohei Yoshida, Kotaro Hayashi
  • Publication number: 20110162354
    Abstract: Particles smaller than 50 nanometers emitted from an internal combustion engine, and serving as nuclei for forming PM (particulate matter), are removed to decrease the number of PM particles that are emitted to atmosphere. High efficiency filters are provided in passages that feed fluids into the combustion chamber, e.g., intake air, fuel and engine oil, in order to remove particles smaller than 50 nanometers serving as nuclei for forming PM.
    Type: Application
    Filed: July 24, 2009
    Publication date: July 7, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kotaro Hayashi, Tetsuya Yamashita
  • Patent number: 7966810
    Abstract: It is suppressed that nanoparticles generated in an internal combustion engine are discharged into the atmosphere. In a cylinder or an exhaust system of the internal combustion engine, microparticles having a particle diameter larger than that of the nanoparticles are generated, and the nanoparticles generated in the internal combustion engine are adsorbed by the microparticles, thereby increasing the diameter of the nanoparticles. The microparticles can be generated in the cylinder as the soot, for example. Additionally, by providing a carbon microparticle generation device in the exhaust system, the microparticles can be generated, too. By making the nanoparticles adsorbed by the microparticles and increasing the diameter of the nanoparticles, discharging of the nanoparticles can be suppressed.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: June 28, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Ito, Kotaro Hayashi, Tetsuya Yamashita, Shinichi Takeshima
  • Patent number: 7891175
    Abstract: An internal combustion engine in which an SOx trap catalyst able to trap SOx contained in exhaust gas is arranged in an engine exhaust passage upstream of an NOx storing catalyst. The SOx trap catalyst is strengthened in basicity compared with the NOx storing catalyst to an extent so that when the temperature of the SOx trap catalyst is in the temperature range at the time of ordinary operation, that is, substantially 150° C. to substantially 400° C., the NOx purification rate by the SOx trap catalyst becomes less than substantially 10 percent of the NOx purification rate by the NOx storing catalyst. When NOx should be released from the NOx storing catalyst, the air-fuel ratio of the exhaust gas flowing into the SOx trap catalyst is temporarily switched from lean to rich.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: February 22, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kohei Yoshida, Kotaro Hayashi
  • Publication number: 20100257847
    Abstract: In the present exhaust purification system of an internal combustion engine, a particulate filter is arranged downstream of an NOx storage/reduction catalyst device and an S trap device is arranged upstream of the NOx storage/reduction catalyst device. A first fuel supplying means for supplying additional fuel for regeneration of the particulate filter to the exhaust system upstream of the S trap device or into the cylinder is provided. An amount of the additional fuel supplied by the first fuel supplying means is controlled to make the S trap device not release SOx. A second fuel supplying means is provided in the exhaust system between the NOx storage/reduction catalyst device and the particulate filter to make up for a deficiency of the additional fuel supplied by the first fuel supplying means in the regeneration treatment of the particulate filter.
    Type: Application
    Filed: July 11, 2008
    Publication date: October 14, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiromasa Nishioka, Shinya Hirota, Kotaro Hayashi, Takamitsu Asanuma, Kohei Yoshida, Hiroshi Otsuki
  • Publication number: 20100101217
    Abstract: An object of the invention is to recover the capability of an exhaust gas purification apparatus provided in an exhaust passage of an internal combustion engine with improved reliability. According to the invention there are provided recovery control execution unit for executing a recovery control in which the temperature of the exhaust gas purification apparatus is raised by supply of reducing agent to a precatalyst to thereby recover the capability of the exhaust gas purification apparatus and prohibition range setting unit for setting a recovery control prohibition range that is an operation range of the internal combustion engine in which execution of the recovery control by the recovery control execution unit is prohibited. The higher the degree of deterioration of the precatalyst is, the higher the maximum values of the engine torque and the engine revolution number in the recovery control prohibition range are set to be.
    Type: Application
    Filed: March 17, 2008
    Publication date: April 29, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Nobumoto Ohashi, Atsushi Hayashi, Masahide Iida, Kotaro Hayashi