Patents by Inventor Kristopher J. Erickson

Kristopher J. Erickson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969945
    Abstract: In one example in accordance with the present disclosure, a system is described. The system includes a reader to 1) read an identifier from a three-dimensional (3D) System printed object that includes a storage element and 2) read a location of the 3D printed object within a build material bed. An extractor of the system extracts, based on the identifier, a post processing operation to execute on the 3D printed object. A controller of the system controls a post processing operation based on extracted post processing operation information and the location.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: April 30, 2024
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Kristopher J. Erickson, Jarrid Wittkopf, Rafael Ballagas, David Wayne George, Lihua Zhao, William J. Allen
  • Publication number: 20240100597
    Abstract: A powder bed material can include from 80 wt % to 100 wt % metal particles having a D50 particle size distribution value from 4 ?m to 150 ?m. From 10 wt % to 100 wt % of the metal particles can be surface-activated metal particles having in intact inner volume and an outer volume with structural defects. The structural defects can exhibit an average surface grain density of 50,000 to 5,000,000 per mm2.
    Type: Application
    Filed: December 9, 2023
    Publication date: March 28, 2024
    Inventors: John Samuel Dilip Jangam, Thomas Anthony, Krzysztof Nauka, Kristopher J. Erickson
  • Patent number: 11911825
    Abstract: In an example, a method is described that includes building a first layer of a three-dimensional heterogeneous object in a first plurality of passes of an additive manufacturing system. An electronic component is inserted directly into the first layer. The electronic component is then fused to the first layer in a second plurality of passes of the additive manufacturing system.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: February 27, 2024
    Assignee: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Kristopher J. Erickson, David George, Sterling Chaffins, Lihua Zhao
  • Patent number: 11904537
    Abstract: A system for forming a multiple layer object, the system including: a spreader to form a layer of polymer particles, the polymer particles having a melting temperature (Tm) of at least 250° C.; a fluid ejection head to selectively deposit a first fusing agent on a first portion of the layer and selectively deposit a second fusing agent on a second portion of the layer, wherein the fluid ejection head does not deposit the fusing agent on a third portion of the layer; and a heat source to heat the first portion and second portion, wherein the first portion is part of the multiple layer object and the second portion is not part of the multiple layer object and the second portion raises a temperature of polymer particles in a subsequent layer.
    Type: Grant
    Filed: May 25, 2022
    Date of Patent: February 20, 2024
    Assignee: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Kristopher J. Erickson, Lihua Zhao
  • Publication number: 20240042680
    Abstract: In an example, a three-dimensional (3D) printed part comprises a plurality of fused build material layers including exterior layers and interior layers. At least some of the interior layers include a composite portion having a miscible solid physically bonded to an amide functionality or an amine functionality of the build material. The miscible solid is a solid at a room temperature ranging from about 18° C. to about 25° C.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 8, 2024
    Inventors: Paul Olubummo, Kristopher J. Erickson, Aja Hartman, Lihua Zhao
  • Patent number: 11887177
    Abstract: In one example in accordance with the present disclosure, a system is described. The system includes a reader to read an identifier associated with a part. An extractor of the system extracts, based on the identifier, sensor output data for the part. A transmitter of the system transmits a re-order request for the part based on the sensor output data.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: January 30, 2024
    Assignee: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Kristopher J. Erickson, Jarrid Wittkopf, Rafael Ballagas, David Wayne George, Lihua Zhao, William J. Allen
  • Patent number: 11878346
    Abstract: According to examples, an object may include a shell including a polymer binder and build material powder; and a core at least partially encompassed by the shell, the core including build material powder and a metal nanoparticle binder.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: January 23, 2024
    Assignee: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Kristopher J. Erickson, Thomas C. Anthony, Lihua Zhao
  • Publication number: 20240008187
    Abstract: The present disclosure relates to a conductive trace precursor composition comprising a metal salt; 3 to 15 weight % of a reducing solvent selected from a lactam and/or a polyol, and water. Where the reducing solvent is 2-pyrrolidinone, the 2-pyrrolidinone is not present in an amount of 5 weight % or in an amount of 7.5 weight % of the conductive trace precursor composition.
    Type: Application
    Filed: December 1, 2020
    Publication date: January 4, 2024
    Inventors: Elizabeth Ann GALATI, John Samuel Dilip JANGAM, Thomas Craig ANTHONY, Aja Pariante HARTMAN, Kristopher J. ERICKSON
  • Patent number: 11845128
    Abstract: A powder bed material can include from 80 wt % to 100 wt % metal particles having a D50 particle size distribution value from 4 ?m to 150 ?m. From 10 wt % to 100 wt % of the metal particles can be surface-activated metal particles having in intact inner volume and an outer volume with structural defects. The structural defects can exhibit an average surface grain density of 50,000 to 5,000,000 per mm2.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: December 19, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: John Samuel Dilip Jangam, Thomas Anthony, Krzysztof Nauka, Kristopher J. Erickson
  • Patent number: 11845129
    Abstract: According to examples, a brown body has from about 0.02 wt. % to about 10 wt. % of a metal nanoparticle binder, in which the metal nanoparticle binder is selectively located within an area of the brown body to impart a strength greater than about 1 kPa to the area.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: December 19, 2023
    Assignee: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Kristopher J. Erickson, Thomas C. Anthony
  • Publication number: 20230398732
    Abstract: The present disclosure describes materials, methods, and systems for three-dimensional printing. In one example, a three-dimensional printing kit can include a fusing agent and a microbe-inhibiting agent. The fusing agent can include water and an electromagnetic radiation absorber. The electromagnetic radiation absorber can absorb radiation and convert the radiation energy to heat. The microbe-inhibiting agent can include a liquid vehicle and a metal bis(dithiolene) complex. The disclosure also describes methods of three-dimensional printing that utilize a metal-containing microbe-inhibiting material, which can be a metal bis(dithiolene) complex or other materials.
    Type: Application
    Filed: October 30, 2020
    Publication date: December 14, 2023
    Inventors: JARRID ALEXANDER WITTKOPF, KRISTOPHER J ERICKSON, EMRE HIRO DISCEKICI, STERLING CHAFFINS, KEVIN P DeKAM, RAGHUVIR N SENGUPTA, ALBERT LIU, ELIZABETH GALATI
  • Patent number: 11840016
    Abstract: A device includes a coater, a dispenser, and a treatment portion. The coater is to coat, layer-by-layer, a build material relative to a build pad to form a 3D object. The dispenser is to at least dispense a fluid including a first at least potentially electrically conductive material in at least some selected locations of an external surface of the 3D object. The treatment portion is to treat the 3D object to substantially increase electrically conductivity on the external surface of the 3D object at the at least some selected locations.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: December 12, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Kristopher J. Erickson, Thomas C. Anthony, Lihua Zhao
  • Publication number: 20230395549
    Abstract: In one example in accordance with the present disclosure, an integrated circuit device is described. The integrated circuit device includes an integrated circuit die that includes a first surface and a second surface. A first electrical contact is disposed on the first surface of the integrated circuit die and a second electrical contact is disposed on the second surface of the integrated circuit die.
    Type: Application
    Filed: October 19, 2020
    Publication date: December 7, 2023
    Inventors: DAVID WAYNE GEORGE, KRISTOPHER J. ERICKSON, JARRID WITTKOPF
  • Publication number: 20230373157
    Abstract: In an example method for forming three-dimensional (3D) printed electronic parts, a build material is applied. An electronic agent is selectively applied in a plurality of passes on a portion of the build material. A fusing agent is also selectively applied on the portion of the build material. The build material is exposed to radiation in a plurality of heating events. During at least one of the plurality of heating events, the portion of the build material in contact with the fusing agent fuses to form a region of a layer. The region of the layer exhibits an electronic property. An order of the plurality of passes, the selective application of the fusing agent, and the plurality of heating events is controlled to control a mechanical property of the layer and the electronic property of the region.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Yan ZHAO, Kristopher J. ERICKSON, Aja HARTMAN, Lihua ZHAO, Sterling CHAFFINS, Kevin P. DEKAM
  • Patent number: 11822995
    Abstract: In one example in accordance with the present disclosure, a system is described. The system includes at least one directional antenna to 1) emit energy waves towards a mass in which an object is disposed and 2) receive reflected signals from a resonator disposed on the object as the mass is moved relative to the directional antenna. The system also includes a controller to, based on received reflected signals, determine a pose of the object within the mass.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: November 21, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: M. Anthony Lewis, William J. Allen, Douglas Pederson, Jarrid Wittkopf, Kristopher J. Erickson, Robert Ionescu
  • Publication number: 20230364859
    Abstract: An example of a kit for three-dimensional (3D) printing includes an ultraviolet (UV) light fusing agent and a detailing agent. The UV light fusing agent including an aqueous vehicle and a plasmonic metal nanoparticle that i) provides absorption enhancement at radiation wavelengths ranging from about 340 nm to about 450 nm, and ii) is present in an amount up to 2 wt% based on a total weight of the UV light fusing agent. The detailing agent includes a surfactant, a co-solvent, and water.
    Type: Application
    Filed: October 29, 2020
    Publication date: November 16, 2023
    Inventors: EMRE HIRO DISCEKICI, KRZYSZTOF NAUKA, JARRID A WITTKOPF, KRISTOPHER J ERICKSON
  • Publication number: 20230347585
    Abstract: A three-dimensional (3D) printing method includes applying a build material composition having a polymer particle and a radiation absorbing additive mixed with the polymer particle, the radiation absorbing additive being selected from the group consisting of inorganic near-infrared absorbers, organic near-infrared absorbers, and combinations thereof. The build material composition is preheated to a temperature below the melting temperature of the polymer particle by exposing the build material composition to radiation, the radiation absorbing additive increasing radiation absorption and accelerating the pre-heating of the build material composition. A fusing agent is selectively applied on at least a portion of the build material composition. The method further includes exposing the build material composition to radiation, whereby at least the polymer particle in the at least the portion of the build material composition in contact with the fusing agent at least partially fuses.
    Type: Application
    Filed: April 7, 2023
    Publication date: November 2, 2023
    Inventors: Krzysztof Nauka, Howard S. Tom, Kristopher J. Erickson, Lihua Zhao, Sivapackia Ganapathiappan
  • Patent number: 11801631
    Abstract: In an example, a three-dimensional (3D) printed part comprises a plurality of fused build material layers including exterior layers and interior layers. At least some of the interior layers include a composite portion having a miscible solid physically bonded to an amide functionality or an amine functionality of the build material. The miscible solid is a solid at a room temperature ranging from about 18° C. to about 25° C.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: October 31, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Paul Olubummo, Kristopher J. Erickson, Aja Hartman, Lihua Zhao
  • Publication number: 20230296547
    Abstract: In one example in accordance with the present disclosure, a three-dimensional (3D) printed sensor system is described. The 3D printed sensor system includes a 3D printed object. The 3D printed sensor system also includes a 3D printed sensor on a body of the 3D printed object. The 3D printed sensor includes a dielectric region disposed between electrodes. A capacitance of the dielectric region is indicative of an environmental condition of the 3D printed object. The 3D printed sensor system also includes a controller integrated with the body of the 3D printed object. The controller is to measure a capacitance of the 3D printed sensor.
    Type: Application
    Filed: August 3, 2020
    Publication date: September 21, 2023
    Inventors: Jarrid Wittkopf, Eric Luna-Ramirez, Kristopher J. Erickson, James William Stasiak
  • Patent number: 11760010
    Abstract: In an example method for forming three-dimensional (3D) printed electronic parts, a build material is applied. An electronic agent is selectively applied in a plurality of passes on a portion of the build material. A fusing agent is also selectively applied on the portion of the build material. The build material is exposed to radiation in a plurality of heating events. During at least one of the plurality of heating events, the portion of the build material in contact with the fusing agent fuses to form a region of a layer. The region of the layer exhibits an electronic property. An order of the plurality of passes, the selective application of the fusing agent, and the plurality of heating events is controlled to control a mechanical property of the layer and the electronic property of the region.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: September 19, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Yan Zhao, Kristopher J. Erickson, Aja Hartman, Lihua Zhao, Sterling Chaffins, Kevin P. DeKam