Patents by Inventor Kuan-Chieh Huang

Kuan-Chieh Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230369360
    Abstract: A photovoltaic cell includes a germanium-containing well embedded in a single crystalline silicon substrate and extending to a proximal horizontal surface of the single crystalline silicon substrate, wherein germanium-containing well includes germanium at an atomic percentage greater than 50%. A silicon-containing capping structure is located on a top surface of the germanium-containing well and includes silicon at an atomic percentage greater than 42%. The silicon-containing capping structure prevents oxidation of the germanium-containing well. A photovoltaic junction may be formed within, or across, the trench by implanting dopants of a first conductivity type and dopants of a second conductivity type.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Jyh-Ming Hung, Tzu-Jui WANG, Kuan-Chieh HUANG, Jhy-Jyi SZE
  • Publication number: 20230343885
    Abstract: Image sensors and methods of forming the same are provided. An image sensor according to the present disclosure includes a silicon substrate, a germanium region disposed in the silicon substrate, a doped semiconductor isolation layer disposed between the silicon substrate and the germanium region, a heavily p-doped region disposed on the germanium region, a heavily n-doped region disposed on the silicon substrate, a first n-type well disposed immediately below the germanium region, a second n-type well disposed immediately below the heavily n-doped region, and a deep n-type well disposed below and in contact with the first n-type well and the second n-type well.
    Type: Application
    Filed: June 8, 2022
    Publication date: October 26, 2023
    Inventors: Hsiang-Lin Chen, Sin-Yi Jiang, Sung-Wen Huang Chen, Yin-Kai Liao, Jung-I Lin, Yi-Shin Chu, Kuan-Chieh Huang
  • Patent number: 11779295
    Abstract: The present invention discloses a method and a system of vertebral compression fracture detection. The method of vertebral compression fracture detection includes: recombining a plurality of anatomical images captured in at least a spine segment of a target individual into a 3D image; using a multi-planar reconstruction method to reformat the 3D image to obtain at least one sagittal reformatted image; using a classification model to determine whether the sagittal reformatted image covers the middle section of the vertebral column or not; using a vertebral detection method to detect each vertebral body in the sagittal reformatted image covering the middle section of the vertebral column; using a keypoint localization method to localize a plurality of keypoints of each vertebral body which was detected in the sagittal reformatted image; evaluating the compression fracture grade of each vertebral body in the sagittal reformatted image.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: October 10, 2023
    Assignees: QUANTA COMPUTER INC., TAIPEI MEDICAL UNIVERSITY
    Inventors: Wing P. Chan, Ai-Ling Hsu, Kuan-Chieh Huang, Yi-Ting Peng, Ching-Chung Kao
  • Patent number: 11783469
    Abstract: The present disclosure provides a method and a system for scanning wafer. The system captures a defect image of a wafer, and generates a reference image corresponding to the first defect image based on a reference image generation model. The system generates a defect marked image based on the defect image and the reference image.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: October 10, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Pei-Hsuan Lee, Chien-Hsiang Huang, Kuang-Shing Chen, Kuan-Hsin Chen, Chun-Chieh Chin
  • Publication number: 20230307365
    Abstract: A semiconductor structure includes a first transistor having a first source/drain (S/D) feature and a first gate; a second transistor having a second S/D feature and a second gate; a multi-layer interconnection disposed over the first and the second transistors; a signal interconnection under the first and the second transistors; and a power rail under the signal interconnection and electrically isolated from the signal interconnection, wherein the signal interconnection electrically connects one of the first S/D feature and the first gate to one of the second S/D feature and the second gate.
    Type: Application
    Filed: May 18, 2023
    Publication date: September 28, 2023
    Inventors: Yu-Xuan Huang, Ching-Wei Tsai, Yi-Hsun Chiu, Yi-Bo Liao, Kuan-Lun Cheng, Wei-Cheng Lin, Wei-An Lai, Ming Chian Tsai, Jiann-Tyng Tzeng, Hou-Yu Chen, Chun-Yuan Chen, Huan-Chieh Su
  • Publication number: 20230278073
    Abstract: A semiconductor device and method of manufacturing the same that utilizes dielectric pedestals on a sensing electrode. The semiconductor device includes a one or more membranes and an integrated circuit substrate. The integrated circuit substrate includes one or more conductive components disposed within a first dielectric layer on the substrate, with the conductive components interconnected with respective integrated circuit components. The substrate further includes one or more sensing electrodes electrically coupled to the conductive components, and one or more dielectric pedestals positioned within a landing area of the sensing electrode. In addition, the semiconductor device includes at least one cavity that is formed by the membrane positioned over the sensing electrode.
    Type: Application
    Filed: March 7, 2022
    Publication date: September 7, 2023
    Inventors: Kang-Yi Lien, Kuan-Chi Tsai, Yi-Chieh Huang, Hsiang-Fu Chen, Chia-Ming Hung, I-Hsuan Chiu
  • Patent number: 11749398
    Abstract: The medical image recognition method includes the following steps: transmitting an accession number to a recognition module through a prediction unit; receiving an accession number and a human body image by a recognition model, and importing the human body image into a set of neural network models respectively; wherein each of the neural network models outputs at least one recognition result; the recognition module returns the recognition results to the prediction unit, and then the recognition results are stored in database.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: September 5, 2023
    Assignee: QUANTA COMPUTER INC.
    Inventors: Kuei-Hong Kuo, Hao Wang, Chung-Yi Yang, Kuan-Chieh Huang, Bo-Yu Lin, Yi-Ting Peng, Ching-Chung Kao
  • Publication number: 20230207719
    Abstract: In some embodiments, the present disclosure relates to a single-photon avalanche detector (SPAD) device including a silicon substrate including a recess in an upper surface of the silicon substrate. A p-type region is arranged in the silicon substrate below a lower surface of the recess. An n-type avalanche region is arranged in the silicon substrate below the p-type region and meets the p-type region at a p-n junction. A germanium region is disposed within the recess over the p-n junction.
    Type: Application
    Filed: May 20, 2022
    Publication date: June 29, 2023
    Inventors: Hung-Chang Chien, Jung-I Lin, Ming-Chieh Hsu, Kuan-Chieh Huang, Tzu-Jui Wang, Shih-Min Huang, Chen-Jong Wang, Dun-Nian Yaung, Yi-Shin Chu, Hsiang-Lin Chen
  • Patent number: 11658119
    Abstract: A semiconductor structure includes a first transistor having a first source/drain (S/D) feature and a first gate; a second transistor having a second S/D feature and a second gate; a multi-layer interconnection disposed over the first and the second transistors; a signal interconnection under the first and the second transistors; and a power rail under the signal interconnection and electrically isolated from the signal interconnection, wherein the signal interconnection electrically connects one of the first S/D feature and the first gate to one of the second S/D feature and the second gate.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: May 23, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Xuan Huang, Ching-Wei Tsai, Yi-Hsun Chiu, Yi-Bo Liao, Kuan-Lun Cheng, Wei-Cheng Lin, Wei-An Lai, Ming Chian Tsai, Jiann-Tyng Tzeng, Hou-Yu Chen, Chun-Yuan Chen, Huan-Chieh Su
  • Publication number: 20230141681
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit on a semiconductor substrate. First and second gate electrode structures are disposed over the substrate and are spaced laterally from one another. A common source/drain region is disposed in the semiconductor substrate between the first and second gate electrode structures. An insulator layer overlies the first and second gate electrode structures. A source/drain contact extends through the insulator layer between the first and second gate electrode structures to contact the common source/drain region. First and second sidewall spacer structures are disposed along outer sidewalls of the first and second gate electrode structures, respectively, and have first and second outer sidewalls, respectively, adjacent to the source/drain contact.
    Type: Application
    Filed: May 20, 2022
    Publication date: May 11, 2023
    Inventors: Chao-Te Liu, Szu-Ying Chen, Chih-Ming Hung, Rui-Fu Hung, Dun-Nian Yaung, Chen-Jong Wang, Kuan-Chieh Huang
  • Patent number: 11600737
    Abstract: Germanium-based sensors are disclosed herein. An exemplary germanium-based sensor includes a germanium photodiode and a junction field effect transistor (JFET) formed from a germanium layer disposed in a silicon substrate, in some embodiments, or on a silicon substrate, in some embodiments. A doped silicon layer, which can be formed by in-situ doping epitaxially grown silicon, is disposed between the germanium layer and the silicon substrate. In embodiments where the germanium layer is on the silicon substrate, the doped silicon layer is disposed between the germanium layer and an oxide layer. The JFET has a doped polysilicon gate, and in some embodiments, a gate diffusion region is disposed in the germanium layer under the doped polysilicon gate. In some embodiments, a pinned photodiode passivation layer is disposed in the germanium layer. In some embodiments, a pair of doped regions in the germanium layer is configured as an e-lens of the germanium-based sensor.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: March 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jhy-Jyi Sze, Sin-Yi Jiang, Yi-Shin Chu, Yin-Kai Liao, Hsiang-Lin Chen, Kuan-Chieh Huang
  • Publication number: 20230069164
    Abstract: A semiconductor image sensor includes a first substrate including a first front side and a first back side, a second substrate including a second front side and a second back side, a third substrate including a third front side and a third back side, a first interconnect structure, and a second interconnect structure. The first substrate includes a layer and a first light-sensing element in the layer. The layer includes a first semiconductor material, and the first light-sensing element includes a second semiconductor material. The second substrate is bonded to the first substrate with the second front side facing the first back side. The third substrate is bonded to the first substrate with the third front side facing the first front side. The first interconnect structure and the second interconnect structure are disposed between the first front side and the third front side.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: JHY-JYI SZE, YI-SHIN CHU, YIN-KAI LIAO, HSIANG-LIN CHEN, SIN-YI JIANG, KUAN-CHIEH HUANG
  • Patent number: 11568232
    Abstract: Systems and methods for programming field programmable gate array (FPGA) devices are provided. A trained model for a deep learning process is obtained and converted to design abstraction (DA) code defining logic block circuits for programming an FPGA device. Each of these logic block circuits represents one of a plurality of modules that executes a processing step between different layers of the deep learning process.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: January 31, 2023
    Assignee: QUANTA COMPUTER INC.
    Inventors: Kuan-Chieh Huang, Yi-Ting Peng
  • Patent number: 11508817
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a substrate having a first semiconductor material. A second semiconductor material is disposed on the first semiconductor material. The second semiconductor material is a group IV semiconductor or a group III-V compound semiconductor. A passivation layer is disposed on the second semiconductor material. The passivation layer includes the first semiconductor material. A first doped region and a second doped region extend through the passivation layer and into the second semiconductor material.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: November 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yin-Kai Liao, Sin-Yi Jiang, Hsiang-Lin Chen, Yi-Shin Chu, Po-Chun Liu, Kuan-Chieh Huang, Jyh-Ming Hung, Jen-Cheng Liu
  • Publication number: 20220367638
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a substrate having a first semiconductor material. A second semiconductor material is disposed on the first semiconductor material. The second semiconductor material is a group IV semiconductor or a group III-V compound semiconductor. A passivation layer is disposed on the second semiconductor material. The passivation layer includes the first semiconductor material. A first doped region and a second doped region extend through the passivation layer and into the second semiconductor material.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 17, 2022
    Inventors: Yin-Kai Liao, Sin-Yi Jiang, Hsiang-Lin Chen, Yi-Shin Chu, Po-Chun Liu, Kuan-Chieh Huang, Jyh-Ming Hung, Jen-Cheng Liu
  • Publication number: 20220310871
    Abstract: A method of manufacturing a semiconductor structure includes: forming a light-absorption layer in a substrate; forming a first doped region of a first conductivity type and a second doped region of a second conductivity type in the light-absorption layer adjacent to the first doped region; depositing a first patterned mask layer over the light-absorption layer, wherein the first patterned mask layer includes an opening exposing the second doped region and covers the first doped region; forming a first silicide layer in the opening on the second doped region; depositing a barrier layer over the first doped region; and annealing the barrier layer to form a second silicide layer on the first doped region.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 29, 2022
    Inventors: YI-SHIN CHU, HSIANG-LIN CHEN, YIN-KAI LIAO, SIN-YI JIANG, KUAN-CHIEH HUANG
  • Publication number: 20220302336
    Abstract: Germanium-based sensors are disclosed herein. An exemplary germanium-based sensor includes a germanium photodiode and a junction field effect transistor (JFET) formed from a germanium layer disposed in a silicon substrate, in some embodiments, or on a silicon substrate, in some embodiments. A doped silicon layer, which can be formed by in-situ doping epitaxially grown silicon, is disposed between the germanium layer and the silicon substrate. In embodiments where the germanium layer on the silicon substrate, the doped silicon layer is disposed between the germanium layer and an oxide layer. The JFET has a doped polysilicon gate, and in some embodiments, a gate diffusion region is disposed in the germanium layer under the doped polysilicon gate. In some embodiments, a pinned photodiode passivation layer is disposed in the germanium layer. In some embodiments, a pair doped region pair in the germanium layer is configured as an e-lens of the germanium-based sensor.
    Type: Application
    Filed: July 23, 2021
    Publication date: September 22, 2022
    Inventors: Jhy-Jyi Sze, Sin-Yi Jiang, Yi-Shin Chu, Yin-Kai Liao, Hsiang-Lin Chen, Kuan-Chieh Huang
  • Publication number: 20220271080
    Abstract: The present disclosure provides a semiconductor structure, including a substrate including a first material, wherein the first material generates electrical signals from radiation within a first range of wavelengths, an image sensor element including a second material, wherein the second material generates electrical signals from radiation within a second range of wavelengths, the second range is different from first range, a transparent layer proximal to a light receiving surface of the image sensor element, wherein the transparent layer is transparent to radiation within the second range of wavelength, and an interconnect structure connected to a signal transmitting surface of the image sensor element.
    Type: Application
    Filed: February 25, 2021
    Publication date: August 25, 2022
    Inventors: JHY-JYI SZE, SIN-YI JIANG, YI-SHIN CHU, YIN-KAI LIAO, HSIANG-LIN CHEN, KUAN-CHIEH HUANG, JUNG-I LIN
  • Patent number: 11387167
    Abstract: Present disclosure provides a semiconductor structure, including a semiconductor substrate, a first metal layer, and a through substrate via (TSV). The semiconductor substrate has an active side. The first metal layer is closest to the active side of the semiconductor substrate, and the first metal layer has a first continuous metal feature. The TSV is extending from the semiconductor substrate to the first continuous metal feature. A width of the TSV at the first metal layer is wider than a width of the first continuous metal feature. Present disclosure also provides a method for manufacturing the semiconductor structure described herein.
    Type: Grant
    Filed: July 3, 2020
    Date of Patent: July 12, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Ching-Chun Wang, Kuan-Chieh Huang, Hsing-Chih Lin, Yi-Shin Chu
  • Publication number: 20220148711
    Abstract: Systems with a contouring method are provided for contouring one or more targets that correspond to specific organs and/or tumors in a three-dimensional medical image of a patient using neural networks. The contouring system includes a storage unit, a processing unit, and a plurality of modules that are computer operable. The processing unit is used to obtain the image, and then to generate one or more contouring images using a contouring method. The contouring method includes enhancing image features and improving contouring accuracy using an image preprocessing module, and extracting a plurality of multi-scale image representations and expanding these representations to one or more contouring images using a neural network-based contouring module.
    Type: Application
    Filed: June 29, 2021
    Publication date: May 12, 2022
    Inventors: Kuei-Hong KUO, Yi-Ting PENG, Ching-Chung KAO, Ai-Ling HSU, Yu-Ren YANG, Pei-Wei SHUENG, Chun-You CHEN, Kuan-Chieh HUANG