Patents by Inventor Kuan-Chieh Huang

Kuan-Chieh Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230069164
    Abstract: A semiconductor image sensor includes a first substrate including a first front side and a first back side, a second substrate including a second front side and a second back side, a third substrate including a third front side and a third back side, a first interconnect structure, and a second interconnect structure. The first substrate includes a layer and a first light-sensing element in the layer. The layer includes a first semiconductor material, and the first light-sensing element includes a second semiconductor material. The second substrate is bonded to the first substrate with the second front side facing the first back side. The third substrate is bonded to the first substrate with the third front side facing the first front side. The first interconnect structure and the second interconnect structure are disposed between the first front side and the third front side.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: JHY-JYI SZE, YI-SHIN CHU, YIN-KAI LIAO, HSIANG-LIN CHEN, SIN-YI JIANG, KUAN-CHIEH HUANG
  • Patent number: 11568232
    Abstract: Systems and methods for programming field programmable gate array (FPGA) devices are provided. A trained model for a deep learning process is obtained and converted to design abstraction (DA) code defining logic block circuits for programming an FPGA device. Each of these logic block circuits represents one of a plurality of modules that executes a processing step between different layers of the deep learning process.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: January 31, 2023
    Assignee: QUANTA COMPUTER INC.
    Inventors: Kuan-Chieh Huang, Yi-Ting Peng
  • Patent number: 11508817
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a substrate having a first semiconductor material. A second semiconductor material is disposed on the first semiconductor material. The second semiconductor material is a group IV semiconductor or a group III-V compound semiconductor. A passivation layer is disposed on the second semiconductor material. The passivation layer includes the first semiconductor material. A first doped region and a second doped region extend through the passivation layer and into the second semiconductor material.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: November 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yin-Kai Liao, Sin-Yi Jiang, Hsiang-Lin Chen, Yi-Shin Chu, Po-Chun Liu, Kuan-Chieh Huang, Jyh-Ming Hung, Jen-Cheng Liu
  • Publication number: 20220367638
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a substrate having a first semiconductor material. A second semiconductor material is disposed on the first semiconductor material. The second semiconductor material is a group IV semiconductor or a group III-V compound semiconductor. A passivation layer is disposed on the second semiconductor material. The passivation layer includes the first semiconductor material. A first doped region and a second doped region extend through the passivation layer and into the second semiconductor material.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 17, 2022
    Inventors: Yin-Kai Liao, Sin-Yi Jiang, Hsiang-Lin Chen, Yi-Shin Chu, Po-Chun Liu, Kuan-Chieh Huang, Jyh-Ming Hung, Jen-Cheng Liu
  • Publication number: 20220310871
    Abstract: A method of manufacturing a semiconductor structure includes: forming a light-absorption layer in a substrate; forming a first doped region of a first conductivity type and a second doped region of a second conductivity type in the light-absorption layer adjacent to the first doped region; depositing a first patterned mask layer over the light-absorption layer, wherein the first patterned mask layer includes an opening exposing the second doped region and covers the first doped region; forming a first silicide layer in the opening on the second doped region; depositing a barrier layer over the first doped region; and annealing the barrier layer to form a second silicide layer on the first doped region.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 29, 2022
    Inventors: YI-SHIN CHU, HSIANG-LIN CHEN, YIN-KAI LIAO, SIN-YI JIANG, KUAN-CHIEH HUANG
  • Publication number: 20220302336
    Abstract: Germanium-based sensors are disclosed herein. An exemplary germanium-based sensor includes a germanium photodiode and a junction field effect transistor (JFET) formed from a germanium layer disposed in a silicon substrate, in some embodiments, or on a silicon substrate, in some embodiments. A doped silicon layer, which can be formed by in-situ doping epitaxially grown silicon, is disposed between the germanium layer and the silicon substrate. In embodiments where the germanium layer on the silicon substrate, the doped silicon layer is disposed between the germanium layer and an oxide layer. The JFET has a doped polysilicon gate, and in some embodiments, a gate diffusion region is disposed in the germanium layer under the doped polysilicon gate. In some embodiments, a pinned photodiode passivation layer is disposed in the germanium layer. In some embodiments, a pair doped region pair in the germanium layer is configured as an e-lens of the germanium-based sensor.
    Type: Application
    Filed: July 23, 2021
    Publication date: September 22, 2022
    Inventors: Jhy-Jyi Sze, Sin-Yi Jiang, Yi-Shin Chu, Yin-Kai Liao, Hsiang-Lin Chen, Kuan-Chieh Huang
  • Publication number: 20220271080
    Abstract: The present disclosure provides a semiconductor structure, including a substrate including a first material, wherein the first material generates electrical signals from radiation within a first range of wavelengths, an image sensor element including a second material, wherein the second material generates electrical signals from radiation within a second range of wavelengths, the second range is different from first range, a transparent layer proximal to a light receiving surface of the image sensor element, wherein the transparent layer is transparent to radiation within the second range of wavelength, and an interconnect structure connected to a signal transmitting surface of the image sensor element.
    Type: Application
    Filed: February 25, 2021
    Publication date: August 25, 2022
    Inventors: JHY-JYI SZE, SIN-YI JIANG, YI-SHIN CHU, YIN-KAI LIAO, HSIANG-LIN CHEN, KUAN-CHIEH HUANG, JUNG-I LIN
  • Patent number: 11387167
    Abstract: Present disclosure provides a semiconductor structure, including a semiconductor substrate, a first metal layer, and a through substrate via (TSV). The semiconductor substrate has an active side. The first metal layer is closest to the active side of the semiconductor substrate, and the first metal layer has a first continuous metal feature. The TSV is extending from the semiconductor substrate to the first continuous metal feature. A width of the TSV at the first metal layer is wider than a width of the first continuous metal feature. Present disclosure also provides a method for manufacturing the semiconductor structure described herein.
    Type: Grant
    Filed: July 3, 2020
    Date of Patent: July 12, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Ching-Chun Wang, Kuan-Chieh Huang, Hsing-Chih Lin, Yi-Shin Chu
  • Publication number: 20220148711
    Abstract: Systems with a contouring method are provided for contouring one or more targets that correspond to specific organs and/or tumors in a three-dimensional medical image of a patient using neural networks. The contouring system includes a storage unit, a processing unit, and a plurality of modules that are computer operable. The processing unit is used to obtain the image, and then to generate one or more contouring images using a contouring method. The contouring method includes enhancing image features and improving contouring accuracy using an image preprocessing module, and extracting a plurality of multi-scale image representations and expanding these representations to one or more contouring images using a neural network-based contouring module.
    Type: Application
    Filed: June 29, 2021
    Publication date: May 12, 2022
    Inventors: Kuei-Hong KUO, Yi-Ting PENG, Ching-Chung KAO, Ai-Ling HSU, Yu-Ren YANG, Pei-Wei SHUENG, Chun-You CHEN, Kuan-Chieh HUANG
  • Publication number: 20220102410
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor with a passivation layer for dark current reduction. A device layer overlies a substrate. Further, a cap layer overlies the device layer. The cap and device layers and the substrate are semiconductor materials, and the device layer has a smaller bandgap than the cap layer and the substrate. For example, the cap layer and the substrate may be silicon, whereas the device layer may be or comprise germanium. A photodetector is in the device and cap layers, and the passivation layer overlies the cap layer. The passivation layer comprises a high k dielectric material and induces formation of a dipole moment along a top surface of the cap layer.
    Type: Application
    Filed: February 17, 2021
    Publication date: March 31, 2022
    Inventors: Hsiang-Lin Chen, Yi-Shin Chu, Yin-Kai Liao, Sin-Yi Jiang, Kuan-Chieh Huang, Jhy-Jyi Sze
  • Publication number: 20220037552
    Abstract: A method and structure providing an optical sensor having an optimized Ge—Si interface includes providing a substrate having a pixel region and a logic region. In some embodiments, the method further includes forming a trench within the pixel region. In various examples, and after forming the trench, the method further includes forming a doped semiconductor layer along sidewalls and along a bottom surface of the trench. In some embodiments, the method further includes forming a germanium layer within the trench and over the doped semiconductor layer. In some examples, and after forming the germanium layer, the method further includes forming an optical sensor within the germanium layer.
    Type: Application
    Filed: June 2, 2021
    Publication date: February 3, 2022
    Inventors: Yin-Kai LIAO, Jen-Cheng LIU, Kuan-Chieh HUANG, Chih-Ming HUNG, Yi-Shin CHU, Hsiang-Lin CHEN, Sin-Yi JIANG
  • Patent number: 11222814
    Abstract: An integrated circuit (IC) provides high performance and high functional density. A first back-end-of-line (BEOL) interconnect structure and a second BEOL interconnect structure are respectively under and over a semiconductor substrate. A first electronic device and a second electronic device are between the semiconductor substrate and respectively a bottom of the first BEOL interconnect structure and a top of the second BEOL interconnect structure. A through substrate via (TSV) extends through the semiconductor substrate, from the first BEOL interconnect structure to the second BEOL interconnect structure. A method for manufacturing the IC is also provided.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: January 11, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Kuan-Chieh Huang
  • Patent number: 11217478
    Abstract: An integrated circuit (IC) provides high performance and high functional density. A first back-end-of-line (BEOL) interconnect structure and a second BEOL interconnect structure are respectively under and over a semiconductor substrate. A first electronic device and a second electronic device are between the semiconductor substrate and respectively a bottom of the first BEOL interconnect structure and a top of the second BEOL interconnect structure. A through substrate via (TSV) extends through the semiconductor substrate, from the first BEOL interconnect structure to the second BEOL interconnect structure. A method for manufacturing the IC is also provided.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: January 4, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Kuan-Chieh Huang
  • Publication number: 20210378616
    Abstract: The present invention discloses a method and a system of vertebral compression fracture detection. The method of vertebral compression fracture detection includes: recombining a plurality of anatomical images captured in at least a spine segment of a target individual into a 3D image; using a multi-planar reconstruction method to reformat the 3D image to obtain at least one sagittal reformatted image; using a classification model to determine whether the sagittal reformatted image covers the middle section of the vertebral column or not; using a vertebral detection method to detect each vertebral body in the sagittal reformatted image covering the middle section of the vertebral column; using a keypoint localization method to localize a plurality of keypoints of each vertebral body which was detected in the sagittal reformatted image; evaluating the compression fracture grade of each vertebral body in the sagittal reformatted image.
    Type: Application
    Filed: April 6, 2021
    Publication date: December 9, 2021
    Inventors: Wing P. CHAN, Ai-Ling HSU, Kuan-Chieh HUANG, Yi-Ting PENG, Ching-Chung KAO
  • Publication number: 20210376086
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a substrate having a first semiconductor material. A second semiconductor material is disposed on the first semiconductor material. The second semiconductor material is a group IV semiconductor or a group III-V compound semiconductor. A passivation layer is disposed on the second semiconductor material. The passivation layer includes the first semiconductor material. A first doped region and a second doped region extend through the passivation layer and into the second semiconductor material.
    Type: Application
    Filed: September 29, 2020
    Publication date: December 2, 2021
    Inventors: Yin-Kai Liao, Sin-Yi Jiang, Hsiang-Lin Chen, Yi-Shin Chu, Po-Chun Liu, Kuan-Chieh Huang, Jyh-Ming Hung, Jen-Cheng Liu
  • Publication number: 20210375959
    Abstract: A photovoltaic cell includes a germanium-containing well embedded in a single crystalline silicon substrate and extending to a proximal horizontal surface of the single crystalline silicon substrate, wherein germanium-containing well includes germanium at an atomic percentage greater than 50%. A silicon-containing capping structure is located on a top surface of the germanium-containing well and includes silicon at an atomic percentage greater than 42%. The silicon-containing capping structure prevents oxidation of the germanium-containing well. A photovoltaic junction may be formed within, or across, the trench by implanting dopants of a first conductivity type and dopants of a second conductivity type.
    Type: Application
    Filed: April 12, 2021
    Publication date: December 2, 2021
    Inventors: Jyh-Ming HUNG, Tzu-Jui WANG, Kuan-Chieh HUANG, Jhy-Jyi SZE
  • Patent number: 11114252
    Abstract: Disclosures of the present invention mainly describe a method for manufacturing perovskite solar cell module. At first, a laser scribing is adopted for forming multi transparent conductive films (TCFs) on a transparent substrate. Subsequently, by using a first mask, multi HTLs, active layers, and ETLs are sequentially formed on the TCFs. Consequently, by the use of a second make, each of the ETLs is formed with an electrically connecting layer thereon, such that a perovskite solar cell module comprising a plurality of solar cell units is hence completed on the transparent substrate. It is worth explaining that, during the whole manufacturing process, each of the solar cell units is prevented from receiving bad influences that are provided by laser scribing or manufacture environment, such that each of the solar cell units is able to exhibit outstanding photoelectric conversion efficiency.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: September 7, 2021
    Assignee: CPC Corporation, Taiwan
    Inventors: Kuan-Chieh Huang, Li-Chung Lai, Chung-Kwang Lee
  • Publication number: 20210202089
    Abstract: The medical image recognition method includes the following steps: transmitting an accession number to a recognition module through a prediction unit; receiving an accession number and a human body image by a recognition model, and importing the human body image into a set of neural network models respectively; wherein each of the neural network models outputs at least one recognition result; the recognition module returns the recognition results to the prediction unit, and then the recognition results are stored in database.
    Type: Application
    Filed: July 20, 2020
    Publication date: July 1, 2021
    Inventors: Kuei-Hong KUO, Hao WANG, Chung-Yi YANG, Kuan-Chieh HUANG, Bo-Yu LIN, Yi-Ting PENG, Ching-Chung KAO
  • Publication number: 20210057169
    Abstract: Disclosures of the present invention mainly describe a method for manufacturing perovskite solar cell module. At first, a laser scribing is adopted for forming multi transparent conductive films (TCFs) on a transparent substrate. Subsequently, by using a first mask, multi HTLs, active layers, and ETLs are sequentially formed on the TCFs. Consequently, by the use of a second make, each of the ETLs is formed with an electrically connecting layer thereon, such that a perovskite solar cell module comprising a plurality of solar cell units is hence completed on the transparent substrate. It is worth explaining that, during the whole manufacturing process, each of the solar cell units is prevented from receiving bad influences that are provided by laser scribing or manufacture environment, such that each of the solar cell units is able to exhibit outstanding photoelectric conversion efficiency.
    Type: Application
    Filed: February 12, 2020
    Publication date: February 25, 2021
    Inventors: Kuan-Chieh Huang, Li-Chung Lai, Chung-Kwang Lee
  • Publication number: 20200335427
    Abstract: Present disclosure provides a semiconductor structure, including a semiconductor substrate, a first metal layer, and a through substrate via (TSV). The semiconductor substrate has an active side. The first metal layer is closest to the active side of the semiconductor substrate, and the first metal layer has a first continuous metal feature. The TSV is extending from the semiconductor substrate to the first continuous metal feature. A width of the TSV at the first metal layer is wider than a width of the first continuous metal feature. Present disclosure also provides a method for manufacturing the semiconductor structure described herein.
    Type: Application
    Filed: July 3, 2020
    Publication date: October 22, 2020
    Inventors: MIN-FENG KAO, DUN-NIAN YAUNG, JEN-CHENG LIU, CHING-CHUN WANG, KUAN-CHIEH HUANG, HSING-CHIH LIN, YI-SHIN CHU