Patents by Inventor Kun-Yu Lin

Kun-Yu Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220384266
    Abstract: In a method of manufacturing a semiconductor device, sacrificial patterns are formed over a hard mask layer disposed over a substrate, sidewall patterns are formed on sidewalls of the sacrificial patterns, the sacrificial patterns are removed, thereby leaving the sidewall patterns as first hard mask patterns, the hard mask layer is patterned by using the first hard mask patters as an etching mask, thereby forming second hard mask patterns, and the substrate is patterned by using the second hard mask patterns as an etching mask, thereby forming fin structures. Each of the first sacrificial patterns has a tapered shape having a top smaller than a bottom.
    Type: Application
    Filed: August 8, 2022
    Publication date: December 1, 2022
    Inventors: Kun-Yu LIN, Yu-Ling KO, I-Chen CHEN, Chih-Teng LIAO, Yi-Jen CHEN
  • Patent number: 11496063
    Abstract: A flyback converter includes a power transformer, a primary side switch, a secondary side switch and a controller. A secondary side switching signal has an SR pulse for achieving synchronous rectification, and a ZVS pulse for achieving zero voltage switching. The ZVS pulse is enabled according to a first characteristic of a resonance waveform, whereas, a primary side switching signal is enabled according to a second characteristic of resonance waveform. When an output current increases, the primary side switching signal is disabled during an inhibition interval, such that primary side switching signal does not overlap with the ZVS pulse, thereby preventing the primary and secondary side switches from being both conductive simultaneously. The inhibition interval is correlated with a rising edge of the primary side switching signal in a previous switching period and a resonance period of the resonance waveform.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: November 8, 2022
    Assignee: RICHTEK TECHNOLOGY INCORPORATION
    Inventors: Yu-Chang Chen, Wei-Hsu Chang, Kun-Yu Lin, Ta-Yung Yang
  • Patent number: 11451154
    Abstract: A flyback power converter circuit includes: a power transformer, a primary side switch and a conversion control circuit. In a DCM, during a dead time, the conversion control circuit calculates an upper limit frequency corresponding to output current according to a frequency upper limit function, and obtains a frequency upper limit masking period according to a reciprocal of the upper limit frequency, wherein the frequency upper limit masking period is a period starting from when the primary side switch is turned ON. During an upper limit selection period, the conversion control circuit selects a valley among one or more valleys in a ringing signal related to a voltage across the primary side switch as an upper limit locked valley, so that the conversion control circuit once again turns ON the primary side switch at a beginning time point of the upper limit locked valley.
    Type: Grant
    Filed: May 30, 2021
    Date of Patent: September 20, 2022
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Kun-Yu Lin, Tzu-Chen Lin, Wei-Hsu Chang, Ta-Yung Yang
  • Publication number: 20220278159
    Abstract: An image sensor device is provided. The image sensor device includes a semiconductor substrate having a front surface, a back surface opposite to the front surface, and a light-sensing region close to the front surface. The image sensor device includes an insulating layer covering the back surface and extending into the semiconductor substrate. The protection layer has a first refractive index, and the first refractive index is less than a second refractive index of the semiconductor substrate and greater than a third refractive index of the insulating layer, and the protection layer conformally and continuously covers the back surface and extends into the semiconductor substrate. The image sensor device includes a reflective structure surrounded by insulating layer in the semiconductor substrate.
    Type: Application
    Filed: May 18, 2022
    Publication date: September 1, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh FANG, Ming-Chi WU, Ji-Heng JIANG, Chi-Yuan WEN, Chien-Nan TU, Yu-Lung YEH, Shih-Shiung CHEN, Kun-Yu LIN
  • Patent number: 11411489
    Abstract: A resonant half-bridge flyback power converter includes: a power transformer and a resonant capacitor which are coupled in series between a half-bridge power stage and an output power; and a primary controller circuit controlling a high side power switch and a low side power switch of the half-bridge power stage. When the high side switch is OFF, the control signal of the low side power switch includes a resonant switching pulse for achieving resonant switching of the low side switch and a soft switching pulse for achieving ZVS of the high side switch. When the output power is lower than a delay threshold, the primary controller circuit determines a delay period which is between the resonant switching pulse and the soft switching pulse to control both the high side power switch and the low side power switch to be OFF. The delay period is negatively correlated with the output power.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: August 9, 2022
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Ta-Yung Yang, Kun-Yu Lin, Yu-Chang Chen
  • Publication number: 20220238572
    Abstract: A method includes etching a semiconductor substrate to form a trench, filling a dielectric layer into the trench, with a void being formed in the trench and between opposite portions of the dielectric layer, etching the dielectric layer to reveal the void, forming a diffusion barrier layer on the dielectric layer, and forming a high-reflectivity metal layer on the diffusion barrier layer. The high-reflectivity metal layer has a portion extending into the trench. A remaining portion of the void is enclosed by the high-reflectivity metal layer.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 28, 2022
    Inventors: Ming-Chi Wu, Chun-Chieh Fang, Bo-Chang Su, Chien Nan Tu, Yu-Lung Yeh, Kun-Yu Lin, Shih-Shiung Chen
  • Patent number: 11391598
    Abstract: The present invention relates to a traffic situation detecting method. The method includes steps of acquiring a current location, a speed of movement and a direction of movement for a ground vehicle; using the current location as a starting point and drawing a detecting scope on a digital map toward the direction of movement; varying a size of the detecting scope in adaptive to an interval of the speed to which the speed of movement belongs; accessing a traffic server to retrieve a traffic event and determining whether the traffic event is situated within the detecting scope; and marking the traffic event located within the detecting scope on a digital map.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: July 19, 2022
    Assignee: National Central University
    Inventors: Chih-Lin Hu, Yu-Kai Huang, Hsiang-Yuan Chiu, Kun-Yu Lin, Sheng-Zhi Huang
  • Patent number: 11342372
    Abstract: An image sensor device is provided. The image sensor device includes a semiconductor substrate having a first side, a second side opposite to the first side, and at least one light-sensing region close to the first side. The image sensor device includes a dielectric feature covering the second side and extending into the semiconductor substrate. The dielectric feature in the semiconductor substrate surrounds the light-sensing region. The image sensor device includes a reflective layer in the dielectric feature in the semiconductor substrate, wherein a top portion of the reflective layer protrudes away from the second side, and a top surface of the reflective layer and a top surface of the insulating layer are substantially coplanar.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: May 24, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Chieh Fang, Ming-Chi Wu, Ji-Heng Jiang, Chi-Yuan Wen, Chien-Nan Tu, Yu-Lung Yeh, Shih-Shiung Chen, Kun-Yu Lin
  • Patent number: 11302734
    Abstract: A method includes etching a semiconductor substrate to form a trench, filling a dielectric layer into the trench, with a void being formed in the trench and between opposite portions of the dielectric layer, etching the dielectric layer to reveal the void, forming a diffusion barrier layer on the dielectric layer, and forming a high-reflectivity metal layer on the diffusion barrier layer. The high-reflectivity metal layer has a portion extending into the trench. A remaining portion of the void is enclosed by the high-reflectivity metal layer.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: April 12, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Chi Wu, Chun-Chieh Fang, Bo-Chang Su, Chien Nan Tu, Yu-Lung Yeh, Kun-Yu Lin, Shih-Shiung Chen
  • Publication number: 20220052042
    Abstract: A method includes providing a substrate having a first semiconductor material; creating a mask that covers an nFET region of the substrate; etching a pFET region of the substrate to form a trench; epitaxially growing a second semiconductor material in the trench, wherein the second semiconductor material is different from the first semiconductor material; and patterning the nFET region and the pFET region to produce a first fin in the nFET region and a second fin in the pFET region, wherein the first fin includes the first semiconductor material and the second fin includes a top portion over a bottom portion, wherein the top portion includes the second semiconductor material, and the bottom portion includes the first semiconductor material.
    Type: Application
    Filed: January 26, 2021
    Publication date: February 17, 2022
    Inventors: Kun-Yu Lin, En-Ping Lin, Yu-Ling Ko, Chih-Teng Liao
  • Publication number: 20220006392
    Abstract: A flyback converter includes a power transformer, a primary side switch, a secondary side switch and a controller. A secondary side switching signal has an SR pulse for achieving synchronous rectification, and a ZVS pulse for achieving zero voltage switching. The ZVS pulse is enabled according to a first characteristic of a resonance waveform, whereas, a primary side switching signal is enabled according to a second characteristic of resonance waveform. When an output current increases, the primary side switching signal is disabled during an inhibition interval, such that primary side switching signal does not overlap with the ZVS pulse, thereby preventing the primary and secondary side switches from being both conductive simultaneously. The inhibition interval is correlated with a rising edge of the primary side switching signal in a previous switching period and a resonance period of the resonance waveform.
    Type: Application
    Filed: June 24, 2021
    Publication date: January 6, 2022
    Inventors: Yu-Chang Chen, Wei-Hsu Chang, Kun-Yu Lin, Ta-Yung Yang
  • Publication number: 20210408921
    Abstract: A resonant half-bridge flyback power converter includes: a power transformer and a resonant capacitor which are coupled in series between a half-bridge power stage and an output power; and a primary controller circuit controlling a high side power switch and a low side power switch of the half-bridge power stage. When the high side switch is OFF, the control signal of the low side power switch includes a resonant switching pulse for achieving resonant switching of the low side switch and a soft switching pulse for achieving ZVS of the high side switch. When the output power is lower than a delay threshold, the primary controller circuit determines a delay period which is between the resonant switching pulse and the soft switching pulse to control both the high side power switch and the low side power switch to be OFF. The delay period is negatively correlated with the output power.
    Type: Application
    Filed: June 7, 2021
    Publication date: December 30, 2021
    Inventors: Ta-Yung Yang, Kun-Yu Lin, Yu-Chang Chen
  • Publication number: 20210384838
    Abstract: A flyback power converter circuit includes a transformer, a blocking switch, a primary side switch, a primary side controller circuit and a secondary side controller circuit. The transformer is coupled between an input voltage and an internal output voltage in an isolated manner. The blocking switch controls the electric connection between the internal output voltage and an external output voltage. In a standby mode, the internal output voltage is regulated to a standby voltage, and the blocking switch is controlled to be OFF; in an operation mode, the internal output voltage is regulated to an operating voltage, and the blocking switch is controlled to be ON, such that the external output voltage has the operating voltage. The standby voltage is smaller than the operating voltage, so that the power consumption of the flyback power converter circuit is reduced in the standby mode.
    Type: Application
    Filed: April 30, 2021
    Publication date: December 9, 2021
    Inventors: Wei-Hsu Chang, Kun-Yu Lin, Tzu-Chen Lin, Ta-Yung Yang
  • Publication number: 20210376734
    Abstract: A flyback power converter circuit includes: a power transformer, a primary side switch and a conversion control circuit. In a DCM, during a dead time, the conversion control circuit calculates an upper limit frequency corresponding to output current according to a frequency upper limit function, and obtains a frequency upper limit masking period according to a reciprocal of the upper limit frequency, wherein the frequency upper limit masking period is a period starting from when the primary side switch is turned ON. During an upper limit selection period, the conversion control circuit selects a valley among one or more valleys in a ringing signal related to a voltage across the primary side switch as an upper limit locked valley, so that the conversion control circuit once again turns ON the primary side switch at a beginning time point of the upper limit locked valley.
    Type: Application
    Filed: May 30, 2021
    Publication date: December 2, 2021
    Inventors: Kun-Yu Lin, Tzu-Chen Lin, Wei-Hsu Chang, Ta-Yung Yang
  • Publication number: 20210366777
    Abstract: In a method of manufacturing a semiconductor device, sacrificial patterns are formed over a hard mask layer disposed over a substrate, sidewall patterns are formed on sidewalls of the sacrificial patterns, the sacrificial patterns are removed, thereby leaving the sidewall patterns as first hard mask patterns, the hard mask layer is patterned by using the first hard mask patters as an etching mask, thereby forming second hard mask patterns, and the substrate is patterned by using the second hard mask patterns as an etching mask, thereby forming fin structures. Each of the first sacrificial patterns has a tapered shape having a top smaller than a bottom.
    Type: Application
    Filed: January 29, 2021
    Publication date: November 25, 2021
    Inventors: Kun-Yu Lin, Yu-Ling KO, I-Chen CHEN, Chih-Teng LIAO, Yi-Jen CHEN
  • Publication number: 20210254993
    Abstract: The present invention relates to a traffic situation detecting method. The method includes steps of acquiring a current location, a speed of movement and a direction of movement for a ground vehicle; using the current location as a starting point and drawing a detecting scope on a digital map toward the direction of movement; varying a size of the detecting scope in adaptive to an interval of the speed to which the speed of movement belongs; accessing a traffic server to retrieve a traffic event and determining whether the traffic event is situated within the detecting scope; and marking the traffic event located within the detecting scope on a digital map.
    Type: Application
    Filed: August 14, 2020
    Publication date: August 19, 2021
    Applicant: National Central University
    Inventors: CHIH-LIN HU, YU-KAI HUANG, HSIANG-YUAN CHIU, KUN-YU LIN, SHENG-ZHI HUANG
  • Patent number: 10930783
    Abstract: Semiconductor devices, FinFET devices with optimized strained-source-drain recess profiles and methods of forming the same are provided. One of the semiconductor devices includes a substrate, a gate stack over the substrate and a strained layer in a recess of the substrate and aside the gate stack. Besides, a ratio of a depth at the greatest width of the recess to a width of the gate stack ranges from about 0.5 to 0.7.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: February 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ying Ting Hsia, Kun Yu Lin, Ying Ming Wang, Li-Te Hsu
  • Patent number: 10861988
    Abstract: An image sensor with an absorption enhancement semiconductor layer is provided. In some embodiments, the image sensor comprises a front-side semiconductor layer, an absorption enhancement semiconductor layer, and a back-side semiconductor layer that are stacked. The absorption enhancement semiconductor layer is stacked between the front-side and back-side semiconductor layers. The absorption enhancement semiconductor layer has an energy bandgap less than that of the front-side semiconductor layer. Further, the image sensor comprises a plurality of protrusions and a photodetector. The protrusions are defined by the back-side semiconductor layer, and the photodetector is defined by the front-side semiconductor layer, the absorption enhancement semiconductor layer, and the back-side semiconductor layer.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Chi Wu, Chien Nan Tu, Kun-Yu Lin, Shih-Shiung Chen
  • Patent number: 10861989
    Abstract: An image sensor with an absorption enhancement semiconductor layer is provided. In some embodiments, the image sensor comprises a front-side semiconductor layer, an absorption enhancement semiconductor layer, and a back-side semiconductor layer that are stacked. The absorption enhancement semiconductor layer is stacked between the front-side and back-side semiconductor layers. The absorption enhancement semiconductor layer has an energy bandgap less than that of the front-side semiconductor layer. Further, the image sensor comprises a plurality of protrusions and a photodetector. The protrusions are defined by the back-side semiconductor layer, and the photodetector is defined by the front-side semiconductor layer, the absorption enhancement semiconductor layer, and the back-side semiconductor layer.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Chi Wu, Chien Nan Tu, Kun-Yu Lin, Shih-Shiung Chen
  • Publication number: 20200343289
    Abstract: An image sensor device is provided. The image sensor device includes a semiconductor substrate having a first side, a second side opposite to the first side, and at least one light-sensing region close to the first side. The image sensor device includes a dielectric feature covering the second side and extending into the semiconductor substrate. The dielectric feature in the semiconductor substrate surrounds the light-sensing region. The image sensor device includes a reflective layer in the dielectric feature in the semiconductor substrate, wherein a top portion of the reflective layer protrudes away from the second side, and a top surface of the reflective layer and a top surface of the insulating layer are substantially coplanar.
    Type: Application
    Filed: July 9, 2020
    Publication date: October 29, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Chieh FANG, Ming-Chi WU, Ji-Heng JIANG, Chi-Yuan WEN, Chien-Nan TU, Yu-Lung YEH, Shih-Shiung CHEN, Kun-Yu LIN