Patents by Inventor Kunal R. Parekh

Kunal R. Parekh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9514975
    Abstract: Semiconductor devices are described that have a metal interconnect extending vertically through a portion of the device to the back side of a semiconductor substrate. A top region of the metal interconnect is located vertically below a horizontal plane containing a metal routing layer. Method of fabricating the semiconductor device can include etching a via into a semiconductor substrate, filling the via with a metal material, forming a metal routing layer subsequent to filling the via, and removing a portion of a bottom of the semiconductor substrate to expose a bottom region of the metal filled via.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: December 6, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Kunal R. Parekh
  • Patent number: 9508628
    Abstract: Semiconductor substrates with unitary vias and via terminals, and associated systems and methods are disclosed. A representative method in accordance with a particular embodiment includes forming a blind via in a semiconductor substrate, applying a protective layer to a sidewall surface of the via, and forming a terminal opening by selectively removing substrate material from an end surface of the via, while protecting from removal substrate material against which the protective coating is applied. The method can further include disposing a conductive material in both the via and the terminal opening to form an electrically conductive terminal that is unitary with conductive material in the via. Substrate material adjacent to the terminal can then be removed to expose the terminal, which can then be connected to a conductive structure external to the substrate.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: November 29, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Kunal R. Parekh
  • Patent number: 9502516
    Abstract: Recessed access transistor devices used with semiconductor devices may include gate electrodes having materials with multiple work functions, materials that are electrically isolated from each other and supplied with two or more voltage supplies, or materials that create a diode junction within the gate electrode.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: November 22, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Jasper S. Gibbons, Darren V. Young, Kunal R. Parekh, Casey Smith
  • Patent number: 9449906
    Abstract: Methods for making semiconductor devices are disclosed herein. A method configured in accordance with a particular embodiment includes forming one or more openings in a front side of the semiconductor device and forming sacrificial plugs in the openings that partially fill the openings. The method further includes further filling the partially filled openings with a conductive material, where individual sacrificial plugs are generally between the conductive material and a substrate of the semiconductor device. The sacrificial plugs are exposed at a backside of the semiconductor device. Contact regions can be formed at the backside by removing the sacrificial plugs.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: September 20, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Kunal R. Parekh
  • Publication number: 20160268428
    Abstract: The use of strained gate electrodes in integrated circuits results in a transistor having improved carrier mobility, improved drive characteristics, and reduced source drain junction leakage. The gate electrode strain can be obtained through non symmetric placement of stress inducing structures as part of the gate electrode.
    Type: Application
    Filed: May 26, 2016
    Publication date: September 15, 2016
    Inventors: Gurtej S. Sandhu, Kunal R. Parekh
  • Publication number: 20160260899
    Abstract: A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. Metal oxide-comprising material is formed over the first conductive electrode. Etch stop material is deposited over the metal oxide-comprising material. Conductive material is deposited over the etch stop material. A second conductive electrode of the memory cell which comprises the conductive material received is formed over the etch stop material. Such includes etching through the conductive material to stop relative to the etch stop material and forming the non-volatile resistive oxide memory cell to comprise the first and second conductive electrodes having both the metal oxide-comprising material and the etch stop material therebetween. Other implementations are contemplated.
    Type: Application
    Filed: May 16, 2016
    Publication date: September 8, 2016
    Applicant: Micron Technology, Inc.
    Inventors: Nishant Sinha, John Smythe, Bhaskar Srinivasan, Gurtej S. Sandhu, Joseph Neil Greeley, Kunal R. Parekh
  • Publication number: 20160233160
    Abstract: Microelectronic devices with through-silicon vias and associated methods of manufacturing such devices. One embodiment of a method for forming tungsten through-silicon vias comprising forming an opening having a sidewall such that the opening extends through at least a portion of a substrate on which microelectronic structures have been formed. The method can further include lining the sidewall with a dielectric material, depositing tungsten on the dielectric material such that a cavity extends through at least a portion of the tungsten, and filling the cavity with a polysilicon material.
    Type: Application
    Filed: April 19, 2016
    Publication date: August 11, 2016
    Inventors: Kyle K. Kirby, Kunal R. Parekh, Philip J. Ireland, Sarah A. Niroumand
  • Patent number: 9356145
    Abstract: The use of strained gate electrodes in integrated circuits results in a transistor having improved carrier mobility, improved drive characteristics, and reduced source drain junction leakage. The gate electrode strain can be obtained through non symmetric placement of stress inducing structures as part of the gate electrode.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: May 31, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Kunal R. Parekh
  • Patent number: 9343665
    Abstract: A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. Metal oxide-comprising material is formed over the first conductive electrode. Etch stop material is deposited over the metal oxide-comprising material. Conductive material is deposited over the etch stop material. A second conductive electrode of the memory cell which comprises the conductive material received is formed over the etch stop material. Such includes etching through the conductive material to stop relative to the etch stop material and forming the non-volatile resistive oxide memory cell to comprise the first and second conductive electrodes having both the metal oxide-comprising material and the etch stop material therebetween. Other implementations are contemplated.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: May 17, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Nishant Sinha, John Smythe, Bhaskar Srinivasan, Gurtej S. Sandhu, Joseph Neil Greeley, Kunal R. Parekh
  • Patent number: 9343362
    Abstract: Microelectronic devices with through-silicon vias and associated methods of manufacturing such devices. One embodiment of a method for forming tungsten through-silicon vias comprising forming an opening having a sidewall such that the opening extends through at least a portion of a substrate on which microelectronic structures have been formed. The method can further include lining the sidewall with a dielectric material, depositing tungsten on the dielectric material such that a cavity extends through at least a portion of the tungsten, and filling the cavity with a polysilicon material.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: May 17, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Kunal R. Parekh, Philip J. Ireland, Sarah A. Niroumand
  • Patent number: 9171902
    Abstract: Methods of pitch doubling of asymmetric features and semiconductor structures including the same are disclosed. In one embodiment, a single photolithography mask may be used to pitch double three features, for example, of a DRAM array. In one embodiment, two wordlines and a grounded gate over field may be pitch doubled. Semiconductor structures including such features are also disclosed.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: October 27, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Kunal R. Parekh, John K. Zahurak
  • Publication number: 20150303095
    Abstract: Semiconductor devices are described that have a metal interconnect extending vertically through a portion of the device to the back side of a semiconductor substrate. A top region of the metal interconnect is located vertically below a horizontal plane containing a metal routing layer. Method of fabricating the semiconductor device can include etching a via into a semiconductor substrate, filling the via with a metal material, forming a metal routing layer subsequent to filling the via, and removing a portion of a bottom of the semiconductor substrate to expose a bottom region of the metal filled via.
    Type: Application
    Filed: June 30, 2015
    Publication date: October 22, 2015
    Inventors: Kyle K. Kirby, Kunal R. Parekh
  • Patent number: 9099457
    Abstract: Semiconductor devices are described that have a metal interconnect extending vertically through a portion of the device to the back side of a semiconductor substrate. A top region of the metal interconnect is located vertically below a horizontal plane containing a metal routing layer. Method of fabricating the semiconductor device can include etching a via into a semiconductor substrate, filling the via with a metal material, forming a metal routing layer subsequent to filling the via, and removing a portion of a bottom of the semiconductor substrate to expose a bottom region of the metal filled via.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: August 4, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Kunal R. Parekh
  • Publication number: 20150093892
    Abstract: Microelectronic devices with through-substrate interconnects and associated methods of manufacturing are disclosed herein. In one embodiment, a semiconductor device includes a semiconductor substrate carrying first and second metallization layers. The second metallization layer is spaced apart from the semiconductor substrate with the first metallization layer therebetween. The semiconductor device also includes a conductive interconnect extending at least partially through the semiconductor substrate. The first metallization layer is in electrical contact with the conductive interconnect via the second metallization layer.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 2, 2015
    Inventors: Kyle K. Kirby, Kunal R. Parekh, Sarah A. Niroumand
  • Publication number: 20150069505
    Abstract: Methods of pitch doubling of asymmetric features and semiconductor structures including the same are disclosed. In one embodiment, a single photolithography mask may be used to pitch double three features, for example, of a DRAM array. In one embodiment, two wordlines and a grounded gate over field may be pitch doubled. Semiconductor structures including such features are also disclosed.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Inventors: Kunal R. Parekh, John K. Zahurak
  • Publication number: 20150041753
    Abstract: Electrical contacts may be formed by forming dielectric liners along sidewalk of a dielectric structure, forming sacrificial liners over and transverse to the dielectric liners along sidewalls of a sacrificial structure, selectively removing portions of the dielectric liners at intersections of the dielectric liners and sacrificial liners to form pores, and at least partially filling the pores with a conductive material. Nano-scale pores may be formed by similar methods. Bottom electrodes may be formed and electrical contacts may be structurally and electrically coupled to the bottom electrodes to form memory devices. Nano-scale electrical contacts may have a rectangular cross-section of as first width and a second width, each width less than about 20 nm. Memory devices may include bottom electrodes, electrical contacts having a cross-sectional area less than about 150 nm2 over and electrically coupled to the bottom electrodes, and a cell material over the electrical contacts.
    Type: Application
    Filed: October 27, 2014
    Publication date: February 12, 2015
    Inventors: Jun Liu, Kunal R. Parekh
  • Publication number: 20150028476
    Abstract: Methods for making semiconductor devices are disclosed herein. A method configured in accordance with a particular embodiment includes forming one or more openings in a front side of the semiconductor device and forming sacrificial plugs in the openings that partially fill the openings. The method further includes further filling the partially filled openings with a conductive material, where individual sacrificial plugs are generally between the conductive material and a substrate of the semiconductor device. The sacrificial plugs are exposed at a backside of the semiconductor device. Contact regions can be formed at the backside by removing the sacrificial plugs.
    Type: Application
    Filed: October 14, 2014
    Publication date: January 29, 2015
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Kyle K. Kirby, Kunal R. Parekh
  • Publication number: 20150014811
    Abstract: Antifuses having two or more materials with differing work function values may be fabricated as recessed access devices and spherical recessed access devices for use with integrated circuit devices and semiconductor devices. The use of materials having different work function values in the fabrication of recessed access device antifuses allows the breakdown areas of the antifuse device to be customized or predicted.
    Type: Application
    Filed: September 29, 2014
    Publication date: January 15, 2015
    Inventors: Casey Smith, Jasper S. Gibbons, Kunal R. Parekh
  • Patent number: 8907457
    Abstract: Microelectronic devices with through-substrate interconnects and associated methods of manufacturing are disclosed herein. In one embodiment, a semiconductor device includes a semiconductor substrate carrying first and second metallization layers. The second metallization layer is spaced apart from the semiconductor substrate with the first metallization layer therebetween. The semiconductor device also includes a conductive interconnect extending at least partially through the semiconductor substrate. The first metallization layer is in electrical contact with the conductive interconnect via the second metallization layer.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: December 9, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Kunal R. Parekh, Sarah A. Niroumand
  • Patent number: 8901700
    Abstract: Methods of pitch doubling of asymmetric features and semiconductor structures including the same are disclosed. In one embodiment, a single photolithography mask may be used to pitch double three features, for example, of a DRAM array. In one embodiment, two wordlines and a grounded gate over field may be pitch doubled. Semiconductor structures including such features are also disclosed.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: December 2, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Kunal R. Parekh, John K. Zahurak