Patents by Inventor Kunliang Zhang

Kunliang Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9805743
    Abstract: A method of forming a sub-structure, suitable for use as a hot seed in a perpendicular magnetic recording head, is described. A buffer layer of alumina with a thickness of 50-350 Angstroms is formed by atomic layer deposition as a write gap. Thereafter, one or more seed layers having a body-centered cubic (bcc) crystal structure may be deposited on the buffer layer. Finally, a magnetic film made of FeCo or FeNi with a coercivity of 60-110 Oe is deposited on the seed layer(s) by a physical vapor deposition (PVD) method at a rate of 0.48 to 3.6 Angstroms per second. The magnetic film is preferably annealed at 220° C. for 2 hours in a 250 Oe applied magnetic field.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: October 31, 2017
    Assignee: Headway Technologies, Inc.
    Inventors: Shengyuan Wang, Kunliang Zhang, Min Li
  • Patent number: 9799357
    Abstract: A MR sensor is disclosed with an antiferromagnetic (AFM) layer recessed behind a bottom shield to reduce reader shield spacing and improve pin related noise. Above the AFM layer is an AP2/AFM coupling layer/AP1 stack that extends from an air bearing surface to the MR sensor backside. The AP2 layer is pinned by the AFM layer, and the AP1 layer serves as a reference layer to an overlying free layer during a read operation. The AP1 and AP2 layers have improved resistance to magnetization flipping because back portions thereof have a full cross-track width “w” between MR sensor sides thereby enabling greater pinning strength from the AFM layer. Front portions of the AP1/AP2 layers lie under the free layer and have a track width less than “w”. The bottom shield may have an anti-ferromagnetic coupling structure. A process flow is provided for fabricating the MR sensor.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: October 24, 2017
    Assignee: Headway Technologies, Inc.
    Inventors: Ruhang Ding, Yewhee Chye, Wenyu Chen, Kunliang Zhang, Min Li
  • Publication number: 20170301855
    Abstract: A seed layer stack with a smooth top surface having a peak to peak film thickness variation of about 0.5 nm is formed by sputter depositing a second seed layer on a first seed layer that is Mg, MgN, or an alloy thereof where the second seed layer has a bond energy substantially greater than that of the first seed layer. The second seed layer may be Ta or NiCr. In some embodiments, an uppermost seed layer that is one or both of Ru and Cu is deposited on the second seed layer. Higher coercivity (Hc) and perpendicular magnetic anisotropy (Hk) is observed in an overlying ferromagnetic layer than when a prior art seed layer stack is employed. The first seed layer has a thickness from 2 to 20 Angstroms and has a resputtering rate about 2 to 40 times that of the second seed layer.
    Type: Application
    Filed: April 14, 2016
    Publication date: October 19, 2017
    Inventors: Kunliang Zhang, Ruhang Ding, Min Li, Wenyu Chen
  • Patent number: 9761254
    Abstract: A MR sensor is disclosed that has a free layer (FL) with perpendicular magnetic anisotropy (PMA), which eliminates the need for an adjacent hard bias structure to stabilize free layer magnetization, and minimizes shield-FL interactions. In a TMR embodiment, a seed layer, free layer, junction layer, reference layer, and pinning layer are sequentially formed on a bottom shield. After forming a sensor sidewall that stops in the seed layer or on the bottom shield, a conformal insulation layer is deposited. Thereafter, a top shield is formed on the insulation layer and includes side shields that are separated from the FL by a narrow read gap. The sensor is scalable to widths <50 nm when PMA is greater than the FL self-demag field. Effective bias field is rather insensitive to sensor aspect ratio, which makes tall stripe and narrow width sensors viable for high RA TMR configurations.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: September 12, 2017
    Assignee: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Kunliang Zhang, Zhi Gang Bai
  • Patent number: 9601137
    Abstract: A method of forming a magnetoresistive (MR) sensor with a composite tunnel barrier comprised primarily of magnesium oxynitride and having a MR ratio of at least 70%, resistance x area (RA) product <1 ohm-?m2, and fewer pinholes than a conventional MgO layer is disclosed. The method involves forming a Mg/MgON/Mg, Mg/MgON/MgN, MgN/MgON/MgN, or MgN/MgON/Mg intermediate tunnel barrier stack and then annealing to drive loosely bound oxygen into adjacent layers thereby forming MgO/MgON/Mg, MgO/MgON/MgON, MgON/MgON/MgON, and MgON/MgON/MgO composite tunnel barriers, respectively, wherein oxygen content in the middle MgON layer is greater than in upper and lower MgON layers. The MgON layer in the intermediate tunnel barrier may be formed by a sputtering process followed by a natural oxidation step and has a thickness greater than the Mg and MgN layers.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: March 21, 2017
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Hui-Chuan Wang, Junjie Quan, Min Li
  • Publication number: 20170077391
    Abstract: A MR sensor is disclosed that has a free layer (FL) with perpendicular magnetic anisotropy (PMA), which eliminates the need for an adjacent hard bias structure to stabilize free layer magnetization, and minimizes shield-FL interactions. In a TMR embodiment, a seed layer, free layer, junction layer, reference layer, and pinning layer are sequentially formed on a bottom shield. After forming a sensor sidewall that stops in the seed layer or on the bottom shield, a conformal insulation layer is deposited. Thereafter, a top shield is formed on the insulation layer and includes side shields that are separated from the FL by a narrow read gap. The sensor is scalable to widths <50 nm when PMA is greater than the FL self-demag field. Effective bias field is rather insensitive to sensor aspect ratio, which makes tall stripe and narrow width sensors viable for high RA TMR configurations.
    Type: Application
    Filed: November 29, 2016
    Publication date: March 16, 2017
    Inventors: Yuchen Zhou, Kunliang Zhang, Zhi Gang Bai
  • Patent number: 9577184
    Abstract: A TMR sensor that includes a free layer having at least one B-containing (BC) layer made of CoFeB, CoFeBM, CoB, CoBM, or CoBLM, and a plurality of non-B containing (NBC) layers made of CoFe, CoFeM, or CoFeLM is disclosed where L and M are one of Ni, Ta, Ti, W, Zr, Hf, Tb, or Nb. One embodiment is represented by (NBC/BC)n where n?2. A second embodiment is represented by (NBC/BC)n/NBC where n?1. In every embodiment, a NBC layer contacts the tunnel barrier and NBC layers each with a thickness from 2 to 8 Angstroms are formed in alternating fashion with one or more BC layers each 10 to 80 Angstroms thick. Total free layer thickness is <100 Angstroms. The free layer configuration described herein enables a significant noise reduction (SNR enhancement) while realizing a high TMR ratio, low magnetostriction, low RA, and low Hc values.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: February 21, 2017
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Hui-Chuan Wang, Yu-Chen Zhou, Min Li, Kunliang Zhang
  • Patent number: 9558765
    Abstract: A spin transfer oscillator (STO) with a seed/FGL/spacer/SIL/capping configuration is disclosed with a composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (A1/A2)YFeCo laminated field generation layer (FGL). The spin injection layer (SIL) may be laminated with a (A1/A2)XFeCo configuration. The FeCo layer in the SIL is exchanged coupled with the (A1/A2)X laminate (x is 5 to 50) to improve robustness. The (A1/A2)Y laminate (y=5 to 30) in the FGL may be exchange coupled with a high Bs layer to enable easier oscillations. A1 may be one of Co, CoFe, or CoFeR where R is a metal, and A2 is one of Ni, NiCo, or NiFe. The STO is typically formed between a main pole and trailing shield in a write head.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: January 31, 2017
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Yuchen Zhou
  • Publication number: 20170025135
    Abstract: The use of supermalloy-like materials such as NiFeMe where Me is one or more of Mo, Cr, and Cu for the side and top shields of a magnetic bit sensor is shown to provide better shielding protection from stray fields because of their extremely high permeability. Moreover, the side shield may comprise a stack in which a Ni, Fe, Co, FeNi, CoFe, or FeCo is sandwiched between two NiFeMe layers to enhance the bias field on an adjacent free layer. Including NiFeMe in a side shield results in an increase in readback amplitude under the same asymmetric sigma. For these sensors, the signal to noise ratio was higher and the bit error rate was lower than with conventional materials in the side shield.
    Type: Application
    Filed: October 3, 2016
    Publication date: January 26, 2017
    Inventors: Yewhee Chye, Kunliang Zhang, Min Li
  • Patent number: 9520147
    Abstract: A MR sensor is disclosed that has a free layer (FL) with perpendicular magnetic anisotropy (PMA) which eliminates the need for an adjacent hard bias structure to stabilize free layer magnetization and minimizes shield-FL interactions. In a TMR embodiment, a seed layer, free layer, junction layer, reference layer, and pinning layer are sequentially formed on a bottom shield. After patterning, a conformal insulation layer is formed along the sensor sidewall. Thereafter, a top shield is formed on the insulation layer and includes side shields that are separated from the FL by a narrow read gap. The sensor is scalable to widths <50 nm when PMA is greater than the FL self-demag field. Effective bias field is rather insensitive to sensor aspect ratio which makes tall stripe and narrow width sensors a viable approach for high RA TMR configurations. Sensor sidewalls may extend into the seed layer or bottom shield.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: December 13, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Kunliang Zhang, Zhigang Bai
  • Patent number: 9515253
    Abstract: A TMR stack or a GMR stack, ultimately formed into a sensor or MRAM element, include insertion layers of Fe or iron rich layers of FeX in its ferromagnetic free layer and/or the AP1 layer of its SyAP pinned layer. X is a non-magnetic, metallic element (or elements) chosen from Ta, Hf, V, Co, Mo, Zr, Nb or Ti whose total atom percent is less than 50%. The insertion layers are between 1 and 10 angstroms in thickness, with between 2 and 5 angstroms being preferred and, in the TMR stack, they are inserted adjacent to the interfaces between a tunneling barrier layer and the ferromagnetic free layer or the tunneling barrier layer and the AP1 layer of the SyAP pinned layer in the TMR stack. The insertion layers constrain interdiffusion of B and Ni from CoFeB and NiFe layers and block NiFe crystalline growth.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: December 6, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Hui-Chuan Wang, Junjie Quan, Yewhee Chye, Min Li
  • Patent number: 9484049
    Abstract: A TMR sensor with a free layer having a FL1/FL2/FL3 configuration is disclosed in which FL1 is FeCo or a FeCo alloy with a thickness between 2 and 15 Angstroms. The FL2 layer is made of CoFeB or a CoFeB alloy having a thickness from 2 to 10 Angstroms. The FL3 layer is from 10 to 100 Angstroms thick and has a negative ? to offset the positive ? from FL1 and FL2 layers and is comprised of CoB or a CoBQ alloy where Q is one of Ni, Mn, Tb, W, Hf, Zr, Nb, and Si. Alternatively, the FL3 layer may be a composite such as CoB/CoFe, (CoB/CoFe)n where n is ?2 or (CoB/CoFe)m/CoB where m is ?1. The free layer described herein affords a high TMR ratio above 60% while achieving low values for ? (<5×10?6), RA (1.5 ohm/?m2), and Hc (<6 Oe).
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: November 1, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Hui-Chuan Wang, Tong Zhao, Min Li, Kunliang Zhang
  • Patent number: 9478355
    Abstract: A method is described for forming a confining current path (CCP) spacer in a CPP-GMR sensor. A first Cu spacer, an amorphous metal/alloy layer such as Hf, a second Cu spacer, and an oxidizable layer such as Al, Mg, or AlCu are sequentially deposited on a ferromagnetic layer. A pre-ion treatment (PIT) and ion assisted oxidation (IAO) transform the amorphous layer into a first metal oxide template and the oxidizable layer into a second metal oxide template both having Cu metal paths therein. A third Cu layer is deposited on the second metal oxide template. The amorphous layer promotes smoothness and smaller grain size in the oxidizable layer to minimize variations in the metal paths and thereby improves dR/R, R, and dR uniformity by 50% or more.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: October 25, 2016
    Assignees: TDK Corporation, Kabushiki Kaisha Toshiba
    Inventors: Kunliang Zhang, Min Li, Yue Liu, Hideaki Fukuzawa, Hiromi Yuasa
  • Patent number: 9460737
    Abstract: The use of supermalloy-like materials for the side and top shields of a magnetic bit sensor is shown to provide better shielding protection from stray fields because of their extremely high permeability.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: October 4, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Yewhee Chye, Kunliang Zhang, Min Li
  • Publication number: 20160284983
    Abstract: A spin transfer oscillator (STO) with a seed/FGL/spacer/SIL/capping configuration is disclosed with a composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (A1/A2)YFeCo laminated field generation layer (FGL). The spin injection layer (SIL) may be laminated with a (A1/A2)XFeCo configuration. The FeCo layer in the SIL is exchanged coupled with the (A1/A2)X laminate (x is 5 to 50) to improve robustness. The (A1/A2)Y laminate (y=5 to 30) in the FGL may be exchange coupled with a high Bs layer to enable easier oscillations. A1 may be one of Co, CoFe, or CoFeR where R is a metal, and A2 is one of Ni, NiCo, or NiFe. The STO is typically formed between a main pole and trailing shield in a write head.
    Type: Application
    Filed: May 23, 2016
    Publication date: September 29, 2016
    Inventors: Kunliang Zhang, Min Li, Yuchen Zhou
  • Patent number: 9437225
    Abstract: A MR sensor is disclosed with an antiferromagnetic (AFM) layer recessed behind a first stack of layers including a free layer and non-magnetic spacer to reduce reader shield spacing and enable increased areal density. The AFM layer may be formed on a first pinned layer in the first stack that is partially embedded in a second pinned layer having a front portion at an air bearing surface (ABS) to improve pinning strength and avoid a morphology effect. In another embodiment, the AFM layer is embedded in a bottom shield and surrounds the sidewalls and back side of an overlying free layer in the sensor stack to reduce reader shield spacing. Pinning strength is improved because of increased contact between the AFM layer and a pinned layer. The free layer is aligned above a bottom shield center section.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: September 6, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Junjie Quan, Kunliang Zhang, Min Li, Ruhang Ding, Yewhee Chye, Glen Garfunkel, Wenyu Chen
  • Patent number: 9437812
    Abstract: A method of fabricating a TMR sensor that includes a free layer having at least one B-containing (BC) layer made of CoFeB, CoFeBM, CoB, CoBM, or CoBLM, and a plurality of non-B containing (NBC) layers made of CoFe, CoFeM, or CoFeLM is disclosed where L and M are one of Ni, Ta, Ti, W, Zr, Hf, Tb, or Nb. In every embodiment, a NBC layer contacts the tunnel barrier and NBC layers each with a thickness from 2 to 8 Angstroms are formed in alternating fashion with one or more BC layers each 10 to 80 Angstroms thick. Total free layer thickness is <100 Angstroms. The TMR sensor may be annealed with a one step or two step process. The free layer configuration described herein enables a significant noise reduction (SNR enhancement) while realizing a high TMR ratio, low magnetostriction, low RA, and low Hc values.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: September 6, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Hui-Chuan Wang, Yu-Chen Zhou, Min Li, Kunliang Zhang
  • Publication number: 20160180869
    Abstract: A method of forming a magnetoresistive (MR) sensor with a composite tunnel barrier comprised primarily of magnesium oxynitride and having a MR ratio of at least 70%, resistance x area (RA) product <1 ohm-?m2, and fewer pinholes than a conventional MgO layer is disclosed. The method involves forming a Mg/MgON/Mg, Mg/MgON/MgN, MgN/MgON/MgN, or MgN/MgON/Mg intermediate tunnel barrier stack and then annealing to drive loosely bound oxygen into adjacent layers thereby forming MgO/MgON/Mg, MgO/MgON/MgON, MgON/MgON/MgON, and MgON/MgON/MgO composite tunnel barriers, respectively, wherein oxygen content in the middle MgON layer is greater than in upper and lower MgON layers. The MgON layer in the intermediate tunnel barrier may be formed by a sputtering process followed by a natural oxidation step and has a thickness greater than the Mg and MgN layers.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 23, 2016
    Inventors: Kunliang Zhang, Hui-Chuan Wang, Junjie Quan, Min Li
  • Patent number: 9349396
    Abstract: A spin transfer oscillator with a seed/SIL/spacer/FGL/capping configuration is disclosed with a composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (A1/A2)X laminated spin injection layer (SIL). Field generation layer (FGL) is made of a high Bs material such FeCo. Alternatively, the STO has a seed/FGL/spacer/SIL/capping configuration. The SIL may include a FeCo layer that is exchanged coupled with the (A1/A2)X laminate (x is 5 to 50) to improve robustness. The FGL may include an (A1/A2)Y laminate (y=5 to 30) exchange coupled with the high Bs layer to enable easier oscillations. A1 may be one of Co, CoFe, or CoFeR where R is a metal, and A2 is one of Ni, NiCo, or NiFe. The STO may be formed between a main pole and trailing shield in a write head.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: May 24, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Yuchen Zhou
  • Patent number: 9281469
    Abstract: The blocking temperature of the AFM layer in a TMR sensor has been raised by inserting a magnetic seed layer between the AFM layer and the bottom shield. This gives the device improved thermal stability, including improved SNR and BER.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: March 8, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Junjie Quan, Kunliang Zhang, Min Li, Hui-Chuan Wang