Patents by Inventor Kunliang Zhang

Kunliang Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8446692
    Abstract: A PMR writer is disclosed that minimizes pole erasure during non-writing and maximize write field during writing through an AFM-FM phase change material that is in an anti-ferromagnetic (AFM) state during non-writing and switches to a ferromagnetic (FM) state by heating during writing. The main pole layer including the write pole may be comprised of a laminated structure having a plurality of “n” ferromagnetic layers and “n?1” AFM-FM phase change material layers arranged in an alternating manner. The AFM-FM phase change material is preferably a FeRh, FeRhPt, FeRhPd, or FeRhIr and may also be used as a flux gate to prevent yoke flux from leaking into the write pole tip. Heating for the AFM to FM transition is provided by write coils and/or a coil located near the AFM-FM phase change material to enable faster transition times.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: May 21, 2013
    Assignee: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Kenichi Takano, Kowang Liu, Kunliang Zhang, Liejie Guan, Moris Dovek, Joe Smyth
  • Publication number: 20130084452
    Abstract: High Hc (>4,000 Oe) and high Hk (>1 Tesla) has been achieved in FePt films as thin as 70 Angstroms. This was accomplished by starting with a relatively thick film having the required high coercivity, coating it with a suitable material such as Ta, and then using ion beam etching to remove surface material until the desired thickness was reached.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Inventors: Kunliang Zhang, Min Zheng, Min Li
  • Publication number: 20130082787
    Abstract: A spin transfer (torque) oscillator (STO) with a non-magnetic spacer formed between a spin injection layer (SIL) and a field generation layer (FGL), and with an interfacial layer comprised of Fe(100-V)CoV where v is from 5 to 100 atomic % formed between the SIL and non-magnetic spacer is disclosed. A composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture is used to enhance perpendicular magnetic anisotropy (PMA) in the STO device. The interfacial layer quenches SIL oscillations and thereby stabilizes the SIL against FGL oscillations. The interfacial layer preferably has a thickness from 5 to 50 Angstroms and enhances amplitude (dR/R) in the STO device. The STO device may have a top SIL or bottom SIL configuration. The SIL is typically a laminated structure such as (Co/Ni)X where x is between 5 and 50.
    Type: Application
    Filed: October 3, 2011
    Publication date: April 4, 2013
    Inventors: Kunliang Zhang, Min Li, Yuchen Zhou, Soichi Oikawa, Hitoshi Iwasaki, Kenichiro Yamada, Katsuhiko Koui
  • Publication number: 20130069626
    Abstract: A method for measuring the frequency in a spin torque oscillator having at least a magnetic oscillation layer (MOL), junction layer, and magnetic reference layer (MRL) is disclosed. In a first embodiment, a small in-plane magnetic field is applied to the STO after a DC current is applied to excite the MOL into an oscillation state. The MRL has a perpendicular magnetization that is tilted slightly to give an in-plane magnetization component to serve as a reference layer for measuring the oscillation frequency of the MOL in-plane magnetization component. An AC voltage change is produced in the DC current as a result of variable STO resistance and directly correlates to MOL oscillation frequency. Alternatively, a field having both perpendicular and in-plane components may be applied externally or by forming the STO between two magnetic poles thereby producing an in-plane magnetization reference component in the MRL.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 21, 2013
    Inventors: Yuchen Zhou, Kunliang Zhang, Min Li, Kenichi Takano, Joe Smyth, Moris Dovek, Akihiko Takeo, Tomomi Funayama, Masahiro Takashita, Masayuki Takagishi
  • Patent number: 8385027
    Abstract: A composite free layer having a FL1/insertion/FL2 configuration is disclosed for achieving high dR/R, low RA, and low ? in TMR or GMR sensors. Ferromagnetic FL1 and FL2 layers have (+) ? and (?) ? values, respectively. FL1 may be CoFe, CoFeB, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, or Nb. FL2 may be CoFe, NiFe, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, Nb, or B. The thin insertion layer includes at least one magnetic element such as Co, Fe, and Ni, and at least one non-magnetic element selected from Ta, Ti, W, Zr, Hf, Nb, Mo, V, Cr, or B. In a TMR stack with a MgO tunnel barrier, dR/R>60%, ?˜1×10?6, and RA=1.2 ohm-um2 when FL1 is CoFe/CoFeB/CoFe, FL2 is CoFe/NiFe/CoFe, and the insertion layer is CoTa or CoFeBTa.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: February 26, 2013
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Hui-Chuan Wang, Min Li, Kunliang Zhang
  • Patent number: 8379351
    Abstract: An example magneto-resistance effect element includes a fixed magnetization layer of which a magnetization is substantially fixed in one direction; a free magnetization layer of which a magnetization is rotated in accordance with an external magnetic field and which is formed opposite to the fixed magnetization layer; and a spacer layer including a current confining layer with an insulating layer and a conductor to pass a current through the insulating layer in a thickness direction thereof and which is located between the fixed magnetization layer and the free magnetization layer. A thin film layer is located on a side opposite to the spacer layer relative to the free magnetization layer and a functional layer containing at least one element selected from the group consisting of Si, Mg, B, Al is formed in or on at least one of the fixed magnetization layer, the free magnetization layer and the thin film layer.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: February 19, 2013
    Assignees: Kabushiki Kaisha Toshiba, TDK Corporation
    Inventors: Yoshihiko Fuji, Hideaki Fukuzawa, Hiromi Yuasa, Kunliang Zhang, Min Li, Michiko Hara, Yoshinari Kurosaki
  • Publication number: 20130029035
    Abstract: A spin transfer oscillator with a seed/SIL/spacer/FGL/capping configuration is disclosed with a composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (A1/A2)X laminated spin injection layer (SIL). Field generation layer (FGL) is made of a high Bs material such FeCo. Alternatively, the STO has a seed/FGL/spacer/SIL/capping configuration. The SIL may include a FeCo layer that is exchanged coupled with the (A1/A2)X laminate (x is 5 to 50) to improve robustness. The FGL may include an (A1/A2)Y laminate (y=5 to 30) exchange coupled with the high Bs layer to enable easier oscillations. A1 may be one of Co, CoFe, or CoFeR where R is a metal, and A2 is one of Ni, NiCo, or NiFe. The STO may be formed between a main pole and trailing shield in a write head.
    Type: Application
    Filed: October 5, 2012
    Publication date: January 31, 2013
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Kunliang Zhang, Min Li, Yuchen Zhou
  • Publication number: 20130029182
    Abstract: A spin transfer oscillator with a seed/SIL/spacer/FGL/capping configuration is disclosed with a composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (A1/A2)X laminated spin injection layer (SIL). Field generation layer (FGL) is made of a high Bs material such FeCo. Alternatively, the STO has a seed/FGL/spacer/SIL/capping configuration. The SIL may include a FeCo layer that is exchanged coupled with the (A1/A2)X laminate (x is 5 to 50) to improve robustness. The FGL may include an (A1/A2)Y laminate (y=5 to 30) exchange coupled with the high Bs layer to enable easier oscillations. A1 may be one of Co, CoFe, or CoFeR where R is a metal, and A2 is one of Ni, NiCo, or NiFe. The STO may be formed between a main pole and trailing shield in a write head.
    Type: Application
    Filed: October 5, 2012
    Publication date: January 31, 2013
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Kunliang Zhang, Min Li, Yuchen Zhou
  • Publication number: 20130001189
    Abstract: A composite free layer having a FL1/insertion/FL2 configuration where a top surface of FL1 is treated with a weak plasma etch is disclosed for achieving enhanced dR/R while maintaining low RA, and low ? in TMR or GMR sensors. The weak plasma etch removes less than about 0.2 Angstroms of FL1 and is believed to modify surface structure and possibly increase surface energy. FL1 may be CoFe, CoFe/CoFeB, or alloys thereof having a (+) ? value. FL2 may be CoFe, NiFe, or alloys thereof having a (?) ? value. The thin insertion layer includes at least one magnetic element such as Co, Fe, and Ni, and at least one non-magnetic element. When CoFeBTa is selected as insertion layer, the CoFeB:Ta ratio is from 1:1 to 4:1.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 3, 2013
    Applicant: Headway Technologies, Inc.
    Inventors: Tong Zhao, Hui Chuan Wang, Min Li, Kunliang Zhang
  • Patent number: 8337676
    Abstract: A high performance TMR sensor is fabricated by incorporating a tunnel barrier having a Mg/MgO/Mg configuration. The 4 to 14 Angstroms thick lower Mg layer and 2 to 8 Angstroms thick upper Mg layer are deposited by a DC sputtering method while the MgO layer is formed by a NOX process involving oxygen pressure from 0.1 mTorr to 1 Torr for 15 to 300 seconds. NOX time and pressure may be varied to achieve a MR ratio of at least 34% and a RA value of 2.1 ohm-um2. The NOX process provides a more uniform MgO layer than sputtering methods. The second Mg layer is employed to prevent oxidation of an adjacent ferromagnetic layer. In a bottom spin valve configuration, a Ta/Ru seed layer, IrMn AFM layer, CoFe/Ru/CoFeB pinned layer, Mg/MgO/Mg barrier, CoFe/NiFe free layer, and a cap layer are sequentially formed on a bottom shield in a read head.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: December 25, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Kunliang Zhang, Hui Chuan Wang, Yu-Hsia Chen, Min Li
  • Patent number: 8339754
    Abstract: An insertion layer is provided between an AFM layer and an AP2 pinned layer in a GMR or TMR element to improve exchange coupling properties by increasing Hex and the Hex/Hc ratio without degrading the MR ratio. The insertion layer may be a 1 to 15 Angstrom thick amorphous magnetic layer comprised of at least one element of Co, Fe, or Ni, and at least one element having an amorphous character selected from B, Zr, Hf, Nb, Ta, Si, or P, or a 1 to 5 Angstrom thick non-magnetic layer comprised of Cu, Ru, Mn, Hf, or Cr. Preferably, the content of the one or more amorphous elements in the amorphous magnetic layer is less than 40 atomic %. Optionally, the insertion layer may be formed within the AP2 pinned layer. Examples of an insertion layer are CoFeB, CoFeZr, CoFeNb, CoFeHf, CoFeNiZr, CoFeNiHf, and CoFeNiNbZr.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: December 25, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Hui-Chuan Wang, Tong Zhao, Min Li
  • Patent number: 8335105
    Abstract: By inserting a spin polarizing layer (typically pure iron) within the free layer of a MTJ or GMR memory cell, dR/R can be improved without significantly affecting other free layer properties such as Hc. Additional performance improvements can be achieved by also inserting a surfactant layer (typically oxygen) within the free layer.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: December 18, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Hui-Chuan Wang, Tong Zhao, Kunliang Zhang, Min Li
  • Patent number: 8329320
    Abstract: A laminated high moment film with a non-AFC configuration is disclosed that can serve as a seed layer for a main pole layer or as the main pole layer itself in a PMR writer. The laminated film includes a plurality of (B/M) stacks where B is an alignment layer and M is a high moment layer. Adjacent (B/M) stacks are separated by an amorphous layer that breaks the magnetic coupling between adjacent high moment layers and reduces remanence in a hard axis direction while maintaining a high magnetic moment and achieving low values for Hch, Hce, and Hk. The amorphous material layer may be made of an oxide, nitride, or oxynitride of one or more of Hf, Zr, Ta, Al, Mg, Zn, Ti, Cr, Nb, or Si, or may be Hf, Zr, Ta, Nb, CoFeB, CoB, FeB, or CoZrNb. Alignment layers are FCC soft ferromagnetic materials or non-magnetic FCC materials.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: December 11, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Min Zheng, Fenglin Liu, Xiaomin Liu
  • Patent number: 8325449
    Abstract: Plasma nitridation, in place of plasma oxidation, is used for the formation of a CCP layer. Al, Mg, Hf, etc. all form insulating nitrides under these conditions. Maintaining the structure at a temperature of at least 150° C. during plasma nitridation and/or performing post annealing at a temperature of 220° C. or higher, ensures that no copper nitride can form. Additionally, unintended oxidation by molecular oxygen of the exposed magnetic layers (mainly the pinned and free layers) is also avoided.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: December 4, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Yue Liu
  • Patent number: 8325448
    Abstract: The pinning field in an MR device was significantly improved by using the Ru 4A peak together with steps to minimize interfacial roughness of the ruthenium layer as well as boron and manganese diffusion into the ruthenium layer during manufacturing. This made it possible to anneal at temperatures as high as 340° C. whereby a high MR ratio could be simultaneously achieved.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: December 4, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Shengyuan Wang, Tong Zhao, Min Li, Hui-Chuan Wang
  • Patent number: 8315020
    Abstract: A method for manufacturing a magneto-resistance effect element is provided. The magneto-resistance effect element includes a first magnetic layer including a ferromagnetic material, a second magnetic layer including a ferromagnetic material and a spacer layer provided between the first magnetic layer and the second magnetic layer, the spacer layer having an insulating layer and a conductive portion penetrating through the insulating layer. The method includes: forming a film to be a base material of the spacer layer; performing a first treatment using a gas including at least one of oxygen molecules, oxygen atoms, oxygen ions, oxygen plasma and oxygen radicals on the film; and performing a second treatment using a gas including at least one of hydrogen molecules, hydrogen atoms, hydrogen ions, hydrogen plasma, hydrogen radicals, deuterium molecules, deuterium atoms, deuterium ions, deuterium plasma and deuterium radicals on the film submitted to the first treatment.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: November 20, 2012
    Assignees: Kabushiki Kaisha Toshiba, TDK Corporation
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji, Shuichi Murakami, Michiko Hara, Kunliang Zhang, Min Li, Erhard Schreck
  • Patent number: 8300356
    Abstract: A spin transfer oscillator with a seed/SIL/spacer/FGL/capping configuration is disclosed with a composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (A1/A2)X laminated spin injection layer (SIL). Field generation layer (FGL) is made of a high Bs material such FeCo. Alternatively, the STO has a seed/FGL/spacer/SIL/capping configuration. The SIL may include a FeCo layer that is exchanged coupled with the (A1/A2)X laminate (x is 5 to 50) to improve robustness. The FGL may include an (A1/A2)Y laminate (y=5 to 30) exchange coupled with the high Bs layer to enable easier oscillations. A1 may be one of Co, CoFe, or CoFeR where R is a metal, and A2 is one of Ni, NiCo, or NiFe. The STO may be formed between a main pole and trailing shield in a write head.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: October 30, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Yuchen Zhou
  • Patent number: 8289661
    Abstract: A CPP-GMR spin valve having a CoFe/NiFe composite free layer is disclosed in which Fe content of the CoFe layer ranges from 20 to 70 atomic % and Ni content in the NiFe layer varies from 85 to 100 atomic % to maintain low Hc and ?S values. A higher than normal Fe content in the CoFe layer improves the MR ratio by ?16% compared with conventional CoFe/NiFe free layers in which the Fe content in CoFe is typically <20 atomic % and the Ni content in NiFe is <85 atomic %. The CPP-GMR performance may also be optimized by incorporating a confining current path layer in the copper spacer between the pinned layer and free layer. For a pinned layer with an AP2/Ru/AP1 configuration, the spin valve performance is further improved by an AP1 layer comprised of a lamination of CoFe and Cu layers as in [CoFe/Cu]2/CoFe.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: October 16, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Yu-Hsia Chen, Chyu-Jiuh Torng
  • Patent number: 8289663
    Abstract: A high performance TMR sensor with a spacer including at least one metal layer such as Cu and one or more MgO layers is disclosed. In addition, there may be a metal dopant in the MgO layer. In an alternative embodiment, the MgO layer may be replaced by other low band gap insulating or semiconductor materials. An ultra-low RA of <0.4 ?ohm-cm2 in combination with a MR of 14%, low magnetostriction, and a low Hin value of about 20 Oe is achieved with a composite spacer of the present invention. The Cu layer thickness is from 0.1 to 10 Angstroms and the MgO thickness is from 5 to 20 Angstroms in spacer configurations including Cu/MgO/Cu, and MgO/Cu/MgO.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: October 16, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Tong Zhao, Hui-Chuan Wang, Min Li
  • Patent number: 8274811
    Abstract: A spin transfer oscillator (STO) structure is disclosed that includes two assist layers with perpendicular magnetic anisotropy (PMA) to enable a field generation layer (FGL) to achieve an oscillation state at lower current density for MAMR applications. In one embodiment, the STO is formed between a main pole and write shield and the FGL has a synthetic anti-ferromagnetic structure. The STO configuration may be represented by seed layer/spin injection layer (SIL)/spacer/PMA layer 1/FGL/spacer/PMA layer 2/capping layer. The spacer may be Cu for giant magnetoresistive (GMR) devices or a metal oxide for tunneling magnetoresistive (TMR) devices. Alternatively, the FGL is a single ferromagnetic layer and the second PMA assist layer has a synthetic structure including two PMA layers with magnetic moment in opposite directions in a seed layer/SIL/spacer/PMA assist 1/FGL/spacer/PMA assist 2/capping layer configuration. SIL and PMA assist layers are laminates of (CoFe/Ni)x or the like.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: September 25, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Yuchen Zhou