Patents by Inventor Kuo-In Chen
Kuo-In Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10546750Abstract: Systems and methods for substrate wafer back side and edge cross section seals. In accordance with a first method embodiment, a silicon wafer of a first conductivity type is accessed. An epitaxial layer of the first conductivity type is grown on a front surface of the silicon wafer. The epitaxial layer is implanted to form a region of an opposite conductivity type. The growing and implanting are repeated to form a vertical column of the opposite conductivity type. The wafer may also be implanted to form a region of the opposite conductivity type vertically aligned with the vertical column.Type: GrantFiled: January 5, 2016Date of Patent: January 28, 2020Assignee: Vishay-SiliconixInventors: Hamilton Lu, The-Tu Chau, Kyle Terrill, Deva N. Pattanayak, Sharon Shi, Kuo-In Chen, Robert Xu
-
Patent number: 10032901Abstract: A semiconductor device (e.g., a flip chip) includes a substrate layer that is separated from a drain contact by an intervening layer. Trench-like feed-through elements that pass through the intervening layer are used to electrically connect the drain contact and the substrate layer when the device is operated.Type: GrantFiled: April 5, 2016Date of Patent: July 24, 2018Assignee: Vishay-SiliconixInventors: Deva Pattanayak, King Owyang, Mohammed Kasem, Kyle Terrill, Reuven Katraro, Kuo-In Chen, Calvin Choi, Qufei Chen, Ronald Wong, Kam Hong Lui, Robert Xu
-
Patent number: 9947770Abstract: A trench metal-oxide-semiconductor field effect transistor (MOSFET), in accordance with one embodiment, includes a drain region, a plurality of gate regions disposed above the drain region, a plurality of gate insulator regions each disposed about a periphery of a respective one of the plurality of gate regions, a plurality of source regions disposed in recessed mesas between the plurality of gate insulator regions, a plurality of body regions disposed in recessed mesas between the plurality of gate insulator regions and between the plurality of source regions and the drain region.Type: GrantFiled: January 17, 2008Date of Patent: April 17, 2018Assignee: Vishay-SiliconixInventors: Jian Li, Kuo-In Chen, Kyle Terril
-
Patent number: 9893168Abstract: A split gate semiconductor device includes a trench gate having a first electrode region and a second electrode region that are separated from each other by a gate oxide layer and an adjacent dielectric layer. The boundary of the gate oxide layer and the dielectric layer is curved to avoid a sharp corner where the gate oxide layer meets the sidewalls of the trench.Type: GrantFiled: August 15, 2016Date of Patent: February 13, 2018Assignee: VISHAY-SILICONIXInventors: Yang Gao, Kuo-In Chen, Kyle Terrill, Sharon Shi
-
Patent number: 9887266Abstract: Ultra-low drain-source resistance power MOSFET. In accordance with an embodiment of the preset invention, a semiconductor device comprises a plurality of trench power MOSFETs. The plurality of trench power MOSFETs is formed in a second epitaxial layer. The second epitaxial layer is formed adjacent and contiguous to a first epitaxial layer. The first epitaxial layer is formed adjacent and contiguous to a substrate highly doped with red Phosphorus. The novel red Phosphorus doped substrate enables a desirable low drain-source resistance.Type: GrantFiled: February 11, 2008Date of Patent: February 6, 2018Assignee: Vishay-SiliconixInventors: The-Tu Chau, Sharon Shi, Qufei Chen, Martin Hernandez, Deva Pattanayak, Kyle Terrill, Kuo-In Chen
-
Patent number: 9761696Abstract: A trench metal-oxide-semiconductor field effect transistor (MOSFET), in accordance with one embodiment, includes a drain region, a plurality of gate regions disposed above the drain region, a plurality of gate insulator regions each disposed about a periphery of a respective one of the plurality of gate regions, a plurality of source regions disposed in recessed mesas between the plurality of gate insulator regions, a plurality of body regions disposed in recessed mesas between the plurality of gate insulator regions and between the plurality of source regions and the drain region.Type: GrantFiled: March 20, 2014Date of Patent: September 12, 2017Assignee: Vishay-SiliconixInventors: Jian Li, Kuo-In Chen, Kyle Terril
-
Patent number: 9685524Abstract: Systems and methods for narrow semiconductor trench structures. In a first method embodiment, a method for forming a narrow trench comprises forming a first layer of insulating material on a substrate and creating a trench through the first layer of insulating material and into the substrate. A second insulating material is formed on the first layer and on exposed portions of the trench and the second insulating material is removed from the first layer of insulating material and the bottom of the trench. The trench is filled with an epitaxial material and the first layer of insulating material is removed. A narrow trench is formed by the removal of remaining portions of the second insulating material.Type: GrantFiled: March 9, 2006Date of Patent: June 20, 2017Assignee: VISHAY-SILICONIXInventors: The-Tu Chau, Hoang Le, Kuo-In Chen
-
Publication number: 20170025527Abstract: A semiconductor device (e.g., a flip chip) includes a substrate layer that is separated from a drain contact by an intervening layer. Trench-like feed-through elements that pass through the intervening layer are used to electrically connect the drain contact and the substrate layer when the device is operated.Type: ApplicationFiled: April 5, 2016Publication date: January 26, 2017Inventors: Deva Pattanayak, King Owyang, Mohammed Kasem, Kyle Terrill, Reuven Katraro, Kuo-In Chen, Calvin Choi, Qufei Chen, Ronald Wong, Kam Hong Lui, Robert Xu
-
Publication number: 20160359018Abstract: A split gate semiconductor device includes a trench gate having a first electrode region and a second electrode region that are separated from each other by a gate oxide layer and an adjacent dielectric layer. The boundary of the gate oxide layer and the dielectric layer is curved to avoid a sharp corner where the gate oxide layer meets the sidewalls of the trench.Type: ApplicationFiled: August 15, 2016Publication date: December 8, 2016Inventors: Yang Gao, Kuo-In Chen, Kyle Terrill, Sharon Shi
-
Patent number: 9443974Abstract: Methods of fabricating a super junction trench power MOSFET (metal oxide semiconductor field effect transistor) device are described. A column of p-type dopant in the super junction is separated from a first column of n-type dopant by a first column of oxide and from a second column of n-type dopant by a second column of oxide. In an n-channel device, a gate element for the FET is advantageously situated over the column of p-type dopant; and in a p-channel device, a gate element for the FET is advantageously situated over the column of n-type dopant.Type: GrantFiled: August 27, 2009Date of Patent: September 13, 2016Assignee: Vishay-SiliconixInventors: Yang Gao, Kyle Terrill, Deva Pattanayak, Kuo-In Chen, The-Tu Chau, Sharon Shi, Qufei Chen
-
Patent number: 9437424Abstract: High mobility P-channel power metal oxide semiconductor field effect transistors. In accordance with an embodiment of the present invention, a power MOSFET is fabricated such that the holes flow in an inversion/accumulation channel, which is along the (110) crystalline plane, or equivalents, and the current flow is in the [110] direction, or equivalents, when a negative potential is applied to the gate with respect to the source. The enhanced channel mobility of holes leads to a reduction of the channel portion of the on-state resistance, thereby advantageously reducing total “on”resistance of the device.Type: GrantFiled: May 20, 2008Date of Patent: September 6, 2016Assignee: Vishay-SiliconixInventors: Deva Pattanayak, Kuo-In Chen, The-Tu Chau
-
Patent number: 9431530Abstract: A method, in one embodiment, can include forming a plurality of trenches in a body region for a vertical metal-oxide semiconductor field-effect transistor (MOSFET). In addition, the method can include angle implanting source regions into the body region. Furthermore, dielectric material can be grown within the plurality of trenches. Gate polysilicon can be deposited within the plurality of trenches. Moreover, the method can include chemical mechanical polishing the gate polysilicon. The method can also include etching back the gate polysilicon within the plurality of trenches.Type: GrantFiled: May 26, 2010Date of Patent: August 30, 2016Assignee: Vishay-SiliconixInventors: Robert Q. Xu, Kuo-In Chen, Karl Lichtenberger, Sharon Shi, Qufei Chen, Kyle Terrill
-
Patent number: 9425306Abstract: In a super junction trench power MOSFET (metal oxide semiconductor field effect transistor) device, a column of p-type dopant in the super junction is separated from a first column of n-type dopant by a first column of oxide and from a second column of n-type dopant by a second column of oxide. In an n-channel device, a gate element for the FET is advantageously situated over the column of p-type dopant; and in a p-channel device, a gate element for the FET is advantageously situated over the column of n-type dopant.Type: GrantFiled: August 27, 2009Date of Patent: August 23, 2016Assignee: Vishay-SiliconixInventors: Yang Gao, Kyle Terrill, Deva Pattanayak, Kuo-In Chen, The-Tu Chau, Sharon Shi, Qufei Chen
-
Patent number: 9425043Abstract: High mobility P-channel power metal oxide semiconductor field effect transistors. In accordance with an embodiment of the present invention, a power MOSFET is fabricated such that the holes flow in an inversion/accumulation channel, which is along the (110) crystalline plane, or equivalents, and the current flow is in the [110] direction, or equivalents, when a negative potential is applied to the gate with respect to the source. The enhanced channel mobility of holes leads to a reduction of the channel portion of the on-state resistance, thereby advantageously reducing total “on” resistance of the device.Type: GrantFiled: December 22, 2006Date of Patent: August 23, 2016Assignee: Vishay-SiliconixInventors: Deva Pattanayak, Kuo-In Chen, The-Tu Chau
-
Patent number: 9419129Abstract: A split gate semiconductor device includes a trench gate having a first electrode region and a second electrode region that are separated from each other by a gate oxide layer and an adjacent dielectric layer. The boundary of the gate oxide layer and the dielectric layer is curved to avoid a sharp corner where the gate oxide layer meets the sidewalls of the trench.Type: GrantFiled: October 21, 2009Date of Patent: August 16, 2016Assignee: Vishay-SiliconixInventors: Yang Gao, Kuo-In Chen, Kyle Terrill, Sharon Shi
-
Patent number: 9412833Abstract: Systems and methods for narrow semiconductor trench structures. In a first method embodiment, a method for forming a narrow trench comprises forming a first layer of insulating material on a substrate and creating a trench through the first layer of insulating material and into the substrate. A second insulating material is formed on the first layer and on exposed portions of the trench and the second insulating material is removed from the first layer of insulating material and the bottom of the trench. The trench is filled with an epitaxial material and the first layer of insulating material is removed. A narrow trench is formed by the removal of remaining portions of the second insulating material.Type: GrantFiled: February 13, 2008Date of Patent: August 9, 2016Assignee: Vishay-SiliconixInventors: The-Tu Chau, Hoang Le, Kuo-In Chen
-
Publication number: 20160225622Abstract: Systems and methods for substrate wafer back side and edge cross section seals. In accordance with a first method embodiment, a silicon wafer of a first conductivity type is accessed. An epitaxial layer of the first conductivity type is grown on a front surface of the silicon wafer. The epitaxial layer is implanted to form a region of an opposite conductivity type. The growing and implanting are repeated to form a vertical column of the opposite conductivity type. The wafer may also be implanted to form a region of the opposite conductivity type vertically aligned with the vertical column.Type: ApplicationFiled: January 5, 2016Publication date: August 4, 2016Applicant: Vishay-SiliconixInventors: Hamilton LU, The-Tu CHAU, Kyle TERRILL, Deva N. PATTANAYAK, Sharon SHI, Kuo-In CHEN, Robert XU
-
Patent number: 9306056Abstract: A semiconductor device (e.g., a flip chip) includes a substrate layer that is separated from a drain contact by an intervening layer. Trench-like feed-through elements that pass through the intervening layer are used to electrically connect the drain contact and the substrate layer when the device is operated.Type: GrantFiled: October 30, 2009Date of Patent: April 5, 2016Assignee: Vishay-SiliconixInventors: Deva Pattanayak, King Owyang, Mohammed Kasem, Kyle Terrill, Reuven Katraro, Kuo-In Chen, Calvin Choi, Qufei Chen, Ronald Wong, Kam Hong Lui, Robert Xu
-
Patent number: 9230810Abstract: Systems and methods for substrate wafer back side and edge cross section seals. In accordance with a first method embodiment, a silicon wafer of a first conductivity type is accessed. An epitaxial layer of the first conductivity type is grown on a front surface of the silicon wafer. The epitaxial layer is implanted to form a region of an opposite conductivity type. The growing and implanting are repeated to form a vertical column of the opposite conductivity type. The wafer may also be implanted to form a region of the opposite conductivity type vertically aligned with the vertical column.Type: GrantFiled: August 31, 2010Date of Patent: January 5, 2016Assignee: Vishay-SiliconixInventors: Hamilton Lu, The-Tu Chau, Kyle Terrill, Deva N. Pattanayak, Sharon Shi, Kuo-In Chen, Robert Xu
-
Publication number: 20140206165Abstract: A trench metal-oxide-semiconductor field effect transistor (MOSFET), in accordance with one embodiment, includes a drain region, a plurality of gate regions disposed above the drain region, a plurality of gate insulator regions each disposed about a periphery of a respective one of the plurality of gate regions, a plurality of source regions disposed in recessed mesas between the plurality of gate insulator regions, a plurality of body regions disposed in recessed mesas between the plurality of gate insulator regions and between the plurality of source regions and the drain region.Type: ApplicationFiled: March 20, 2014Publication date: July 24, 2014Applicant: VISHAY-SILICONIXInventors: Jian Li, Kuo-In Chen, Kyle Terril