Patents by Inventor Kuo-In Chen
Kuo-In Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8697571Abstract: A structure includes a semiconductor device formed in a substrate; an insulator adjacent to the semiconductor device; an electrical contact electrically coupled to the semiconductor device, wherein the electrical contact includes tungsten; and an electrical connector coupled to the electrical contact, wherein the electrical connector includes aluminum. A surface of the insulator and a surface of the electrical contact form a substantially even surface.Type: GrantFiled: October 17, 2012Date of Patent: April 15, 2014Assignee: Vishay-SiliconixInventors: Ronald Wong, Jason Qi, Kyle Terrill, Kuo-In Chen
-
Patent number: 8471390Abstract: A structure includes a semiconductor device formed in a substrate; an insulator adjacent to the semiconductor device; an electrical contact electrically coupled to the semiconductor device, wherein the electrical contact includes tungsten; and an electrical connector coupled to the electrical contact, wherein the electrical connector includes aluminum. A surface of the insulator and a surface of the electrical contact form a substantially even surface.Type: GrantFiled: May 2, 2007Date of Patent: June 25, 2013Assignee: Vishay-SiliconixInventors: Ronald Wong, Jason Qi, Kyle Terrill, Kuo-In Chen
-
Patent number: 8409954Abstract: Ultra-low drain-source resistance power MOSFET. In accordance with an embodiment of the preset invention, a semiconductor device comprises a plurality of trench power MOSFETs. The plurality of trench power MOSFETs is formed in a second epitaxial layer. The second epitaxial layer is formed adjacent and contiguous to a first epitaxial layer. The first epitaxial layer is formed adjacent and contiguous to a substrate highly doped with red Phosphorous. The novel red Phosphorous doped substrate enables a desirable low drain-source resistance.Type: GrantFiled: March 21, 2006Date of Patent: April 2, 2013Assignee: Vishay-SilconixInventors: The-Tu Chau, Sharon Shi, Qufei Chen, Martin Hernandez, Deva Pattanayak, Kyle Terrill, Kuo-In Chen
-
Patent number: 8368126Abstract: Remote contacts to the polysilicon regions of a trench metal oxide semiconductor (MOS) barrier Schottky (TMBS) device, as well as to the polysilicon regions of a MOS field effect transistor (MOSFET) section and of a TMBS section in a monolithically integrated TMBS and MOSFET (SKYFET) device, are employed. The polysilicon is recessed relative to adjacent mesas. Contact of the source metal to the polysilicon regions of the TMBS section is made through an extension of the polysilicon to outside the active region of the TMBS section. This change in the device architecture relieves the need to remove all of the oxides from both the polysilicon and silicon mesa regions of the TMBS section prior to the contact step. As a consequence, encroachment of contact metal into the sidewalls of the trenches in a TMBS device, or in a SKYFET device, is avoided.Type: GrantFiled: April 7, 2008Date of Patent: February 5, 2013Assignee: Vishay-SiliconixInventors: Deva N. Pattanayak, Kyle Terrill, Sharon Shi, Misha Lee, Yuming Bai, Kam Lui, Kuo-In Chen
-
Publication number: 20110101525Abstract: A semiconductor device (e.g., a flip chip) includes a substrate layer that is separated from a drain contact by an intervening layer. Trench-like feed-through elements that pass through the intervening layer are used to electrically connect the drain contact and the substrate layer when the device is operated.Type: ApplicationFiled: October 30, 2009Publication date: May 5, 2011Applicant: VISHAY-SILICONIXInventors: Deva Pattanayak, King Owyang, Mohammed Kasem, Kyle Terrill, Reuven Katraro, Kuo-In Chen, Calvin Choi, Qufei Chen, Ronald Wong, Kam Hong Lui, Robert Xu
-
Publication number: 20110089486Abstract: A method, in one embodiment, can include forming a plurality of trenches in a body region for a vertical metal-oxide semiconductor field-effect transistor (MOSFET). In addition, the method can include angle implanting source regions into the body region. Furthermore, dielectric material can be grown within the plurality of trenches. Gate polysilicon can be deposited within the plurality of trenches. Moreover, the method can include chemical mechanical polishing the gate polysilicon. The method can also include etching back the gate polysilicon within the plurality of trenches.Type: ApplicationFiled: May 26, 2010Publication date: April 21, 2011Applicant: VISHAY-SILICONIXInventors: Robert Q. Xu, Kuo-In Chen, Karl Lichtenberger, Sharon Shi, Qufei Chen, Kyle Terrill
-
Publication number: 20110089485Abstract: A split gate semiconductor device includes a trench gate having a first electrode region and a second electrode region that are separated from each other by a gate oxide layer and an adjacent dielectric layer. The boundary of the gate oxide layer and the dielectric layer is curved to avoid a sharp corner where the gate oxide layer meets the sidewalls of the trench.Type: ApplicationFiled: October 21, 2009Publication date: April 21, 2011Applicant: VISHAY-SILICONIXInventors: Yang Gao, Kuo-In Chen, Kyle Terrill, Sharon Shi
-
Publication number: 20110049614Abstract: In a super junction trench power MOSFET (metal oxide semiconductor field effect transistor) device, a column of p-type dopant in the super junction is separated from a first column of n-type dopant by a first column of oxide and from a second column of n-type dopant by a second column of oxide. In an n-channel device, a gate element for the FET is advantageously situated over the column of p-type dopant; and in a p-channel device, a gate element for the FET is advantageously situated over the column of n-type dopant.Type: ApplicationFiled: August 27, 2009Publication date: March 3, 2011Applicant: VISHAY-SILICONIXInventors: Yang Gao, Kyle Terrill, Deva Pattanayak, Kuo-In Chen, The-Tu Chau, Sharon Shi, Qufei Chen
-
Publication number: 20110053326Abstract: Methods of fabricating a super junction trench power MOSFET (metal oxide semiconductor field effect transistor) device are described. A column of p-type dopant in the super junction is separated from a first column of n-type dopant by a first column of oxide and from a second column of n-type dopant by a second column of oxide. In an n-channel device, a gate element for the FET is advantageously situated over the column of p-type dopant; and in a p-channel device, a gate element for the FET is advantageously situated over the column of n-type dopant.Type: ApplicationFiled: August 27, 2009Publication date: March 3, 2011Applicant: VISHAY-SILICONIXInventors: Yang Gao, Kyle Terrill, Deva Pattanayak, Kuo-In Chen, The-Tu Chau, Sharon Shi, Qufei Chen
-
Publication number: 20110049682Abstract: Systems and methods for substrate wafer back side and edge cross section seals. In accordance with a first method embodiment, a silicon wafer of a first conductivity type is accessed. An epitaxial layer of the first conductivity type is grown on a front surface of the silicon wafer. The epitaxial layer is implanted to form a region of an opposite conductivity type. The growing and implanting are repeated to form a vertical column of the opposite conductivity type. The wafer may also be implanted to form a region of the opposite conductivity type vertically aligned with the vertical column.Type: ApplicationFiled: August 31, 2010Publication date: March 3, 2011Applicant: VISHAY-SILICONIXInventors: Hamilton Lu, The-Tu Chau, Kyle Terrill, Deva N. Pattanayak, Sharon Shi, Kuo-In Chen, Robert Xu
-
Patent number: 7704836Abstract: In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.Type: GrantFiled: March 31, 2008Date of Patent: April 27, 2010Assignee: Siliconix incorporatedInventors: Deva N. Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Hong Lui, Kuo-In Chen, Sharon Shi
-
Publication number: 20100019316Abstract: A method of fabricating a trench MOSFET, the lower portion of the trench containing a buried source electrode which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.Type: ApplicationFiled: September 29, 2009Publication date: January 28, 2010Applicant: Siliconix incorporatedInventors: Deva N. Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Hong Lui, Kuo-In Chen, Sharon Shi
-
Patent number: 7557409Abstract: In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.Type: GrantFiled: January 26, 2007Date of Patent: July 7, 2009Assignee: Siliconix IncorporatedInventors: Deva N. Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Hong Lui, Kuo-In Chen, Sharon Shi
-
Publication number: 20090104751Abstract: Systems and methods for narrow semiconductor trench structures. In a first method embodiment, a method for forming a narrow trench comprises forming a first layer of insulating material on a substrate and creating a trench through the first layer of insulating material and into the substrate. A second insulating material is formed on the first layer and on exposed portions of the trench and the second insulating material is removed from the first layer of insulating material and the bottom of the trench. The trench is filled with an epitaxial material and the first layer of insulating material is removed. A narrow trench is formed by the removal of remaining portions of the second insulating material.Type: ApplicationFiled: February 13, 2008Publication date: April 23, 2009Applicant: Vishay-SiliconixInventors: The-Tu Chau, Hoang Le, Kuo-In Chen
-
Publication number: 20080258212Abstract: Remote contacts to the polysilicon regions of a trench metal oxide semiconductor (MOS) barrier Schottky (TMBS) device, as well as to the polysilicon regions of a MOS field effect transistor (MOSFET) section and of a TMBS section in a monolithically integrated TMBS and MOSFET (SKYFET) device, are employed. The polysilicon is recessed relative to adjacent mesas. Contact of the source metal to the polysilicon regions of the TMBS section is made through an extension of the polysilicon to outside the active region of the TMBS section. This change in the device architecture relieves the need to remove all of the oxides from both the polysilicon and silicon mesa regions of the TMBS section prior to the contact step. As a consequence, encroachment of contact metal into the sidewalls of the trenches in a TMBS device, or in a SKYFET device, is avoided.Type: ApplicationFiled: April 7, 2008Publication date: October 23, 2008Applicant: VISHAY-SILICONIXInventors: Deva N. Pattanayak, Kyle Terrill, Sharon Shi, Misha Lee, Yuming Bai, Kam Lui, Kuo-In Chen
-
Publication number: 20080246081Abstract: A trench metal-oxide-semiconductor field effect transistor (MOSFET), in accordance with one embodiment, includes a drain region, a plurality of gate regions disposed above the drain region, a plurality of gate insulator regions each disposed about a periphery of a respective one of the plurality of gate regions, a plurality of source regions disposed in recessed mesas between the plurality of gate insulator regions, a plurality of body regions disposed in recessed mesas between the plurality of gate insulator regions and between the plurality of source regions and the drain region.Type: ApplicationFiled: January 17, 2008Publication date: October 9, 2008Applicant: VISHAY-SILICONIXInventors: Jian Li, Kuo-In Chen, Kyle Terril
-
Publication number: 20080220571Abstract: High mobility P-channel power metal oxide semiconductor field effect transistors. In accordance with an embodiment of the present invention, a power MOSFET is fabricated such that the holes flow in an inversion/accumulation channel, which is along the (110) crystalline plane, or equivalents, and the current flow is in the [110] direction, or equivalents, when a negative potential is applied to the gate with respect to the source. The enhanced channel mobility of holes leads to a reduction of the channel portion of the on-state resistance, thereby advantageously reducing total “on” resistance of the device.Type: ApplicationFiled: May 20, 2008Publication date: September 11, 2008Applicant: VISHAY-SILICONIXInventors: Deva Pattanayak, Kuo-In Chen, The-Tu Chau
-
Publication number: 20080182376Abstract: In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.Type: ApplicationFiled: March 31, 2008Publication date: July 31, 2008Applicant: Siliconix incorporatedInventors: Deva N. Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Hong Lui, Kuo-In Chen, Sharon Shi
-
Publication number: 20080157281Abstract: Ultra-low drain-source resistance power MOSFET. In accordance with an embodiment of the preset invention, a semiconductor device comprises a plurality of trench power MOSFETs. The plurality of trench power MOSFETs is formed in a second epitaxial layer. The second epitaxial layer is formed adjacent and contiguous to a first epitaxial layer. The first epitaxial layer is formed adjacent and contiguous to a substrate highly doped with red Phosphorus. The novel red Phosphorus doped substrate enables a desirable low drain-source resistance.Type: ApplicationFiled: February 11, 2008Publication date: July 3, 2008Inventors: The-Tu Chau, Sharon Shi, Qufei Chen, Martin Hernandez, Deva Pattanayak, Kyle Terrill, Kuo-In Chen
-
Publication number: 20070284754Abstract: A structure includes a semiconductor device formed in a substrate; an insulator adjacent to the semiconductor device; an electrical contact electrically coupled to the semiconductor device, wherein the electrical contact includes tungsten; and an electrical connector coupled to the electrical contact, wherein the electrical connector includes aluminum. A surface of the insulator and a surface of the electrical contact form a substantially even surface.Type: ApplicationFiled: May 2, 2007Publication date: December 13, 2007Inventors: Ronald Wong, Jason Qi, Kyle Terrill, Kuo-In Chen