Patents by Inventor Kyle M. Hanson

Kyle M. Hanson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9799537
    Abstract: A processing assembly for a semiconductor workpiece generally includes a rotor assembly capable of spinning a workpiece, a chemistry delivery assembly for delivering chemistry to the workpiece, and a chemistry collection assembly for collecting spent chemistry from the workpiece. The chemistry collection assembly may include a weir that is configured to spin with the rotor assembly. A method of processing a semiconductor workpiece is also provided.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: October 24, 2017
    Assignee: APPLIED Materials, Inc.
    Inventors: Jason Rye, Kyle M. Hanson
  • Publication number: 20170263472
    Abstract: A wafer processor has a rotor holding wafers within a process tank. The rotor rotates sequentially moving the wafers through a process liquid held in the process tank. The tank may have an I-beam shape to reduce the volume of process liquid. A load port is provided at a top of the process tank for loading and unloading wafers into and out of the process tank. Rinsing and cleaning chambers may be associated with the load port to remove process liquid from processed wafers. The processor may be oriented with the rotor rotating about a horizontal axis or about a vertical axis.
    Type: Application
    Filed: February 23, 2017
    Publication date: September 14, 2017
    Inventors: John L. Klocke, Kyle M. Hanson, Joseph A. Jonathan, Stuart Crane
  • Patent number: 9673742
    Abstract: A method of compensating for magnetic flux resulting from variance from a first electric machine to a second electric machine. A magnetic flux change for the first machine is calculated as a function of a flux difference between the first machine and the second machine. Operation of the first machine is controlled using the magnetic flux change.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: June 6, 2017
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Kyle M. Hanson, Edward W. Haran
  • Publication number: 20160201986
    Abstract: In one or more embodiments, a substrate holder apparatus is provided. A substrate holder apparatus includes a frame having multiple substrate contact supports configured to contact and support a substrate, and one or more vacuum ports configured to apply a vacuum at one or more locations along a bottom edge of a substrate. The one or more vacuum ports provide air outflow that removes liquid and/or residue along a bottom edge of the substrate after immersion into a tank. Assemblies including the substrate holder apparatus and methods of cleaning substrates with the substrate holder apparatus are provided, as are additional aspects.
    Type: Application
    Filed: January 9, 2015
    Publication date: July 14, 2016
    Inventors: Edwin Velazquez, Ekaterina Mikhaylichenko, Kyle M. Hanson, Jonathan P. Domin, Jim K. Atkinson
  • Publication number: 20160200201
    Abstract: A vehicle includes a traction battery, an electric machine, and a variable voltage converter. The variable voltage converter includes an inductor and is disposed electrically between the traction battery and electric machine. The vehicle also includes a controller programmed to issue duty cycle commands for the variable voltage converter based on a product of an AC component of current flowing through the inductor and a calibrated resistance.
    Type: Application
    Filed: January 14, 2015
    Publication date: July 14, 2016
    Inventors: Daniel Richard Luedtke, Yulei Chen, Kyle M. Hanson, Fazal Urrahman Syed, Wei Xu
  • Publication number: 20160181086
    Abstract: In some embodiments, a system is provided that includes (1) a loading position; (2) a drying position; (3) a movable tank configured to (a) hold at least one substrate; (b) hold a cleaning chemistry so as to expose a substrate within the movable tank to the cleaning chemistry; and (c) translate between the loading position and the drying position; and (4) a drying station located at the drying position and configured to rinse and dry a substrate as the substrate is unloaded from the movable tank when the movable tank is at the drying position. Numerous other aspects are provided.
    Type: Application
    Filed: January 21, 2015
    Publication date: June 23, 2016
    Inventors: Ekaterina Mikhaylichenko, Brian J. Brown, Kyle M. Hanson, Vincent S. Francischetti
  • Publication number: 20160175857
    Abstract: An example waterfall apparatus includes (1) a first portion of a first width having (a) a first plenum, a second plenum, and a restricted fluid path therebetween; (b) a first coupling surface; and (c) an inlet opening that creates a fluid path between the first coupling surface and the first plenum; and (2) a second portion of a second width larger than the first width and having (a) a second coupling surface; and (b) an inlet aligned with the first portion inlet opening. The first and second coupling surfaces form a slot that extends along at least a portion of a length of the waterfall apparatus and that connects to the second plenum. Fluid introduced into the second portion inlet fills the first plenum, travels through the restricted fluid path to the second plenum, and exits the slot between the first and second portions to form a rinsing fluid waterfall.
    Type: Application
    Filed: February 19, 2015
    Publication date: June 23, 2016
    Inventors: Jonathan S. Frankel, Brian J. Brown, Vincent S. Francischetti, Paul McHugh, Kyle M. Hanson, Ekaterina Mikhaylichenko
  • Patent number: 9245767
    Abstract: An anneal module for annealing semiconductor material wafers and similar substrates reduces particle contamination and oxygen ingress while providing uniform heating including for 500° C. processes. The anneal module may include a process chamber formed in a metal body having internal cooling lines. A hot plate has a pedestal supported on a thermal choke on the body. A gas distributor in the lid over the hot plate flows gas uniformly over the wafer. A transfer mechanism moves a hoop to shift the wafer between the hot plate and a cold plate.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: January 26, 2016
    Assignee: APPLIED Materials, Inc.
    Inventors: Vincent Steffan Francischetti, Gregory J. Wilson, Kyle M. Hanson, Paul Wirth, Robert B. Moore
  • Patent number: 9234293
    Abstract: Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and a counter electrode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, a counter electrode, a second processing fluid, and an anion permeable barrier layer. The anion permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain anionic species to transfer between the two fluids.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: January 12, 2016
    Assignee: APPLIED Materials, Inc.
    Inventors: Rajesh Baskaran, Robert W. Batz, Jr., Bioh Kim, Thomas L. Ritzdorf, John Lee Klocke, Kyle M. Hanson
  • Publication number: 20150303837
    Abstract: A method of compensating for magnetic flux resulting from variance from a first electric machine to a second electric machine. A magnetic flux change for the first machine is calculated as a function of a flux difference between the first machine and the second machine. Operation of the first machine is controlled using the magnetic flux change.
    Type: Application
    Filed: April 21, 2014
    Publication date: October 22, 2015
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: KYLE M. HANSON, EDWARD W. HARAN
  • Patent number: 9160025
    Abstract: Embodiments of the invention generally provide for flow battery cells and systems containing a plurality of flow battery cells, and methods for improving metal plating within the flow battery cell, such as by flowing and exposing the catholyte to various types of cathodes. In one embodiment, a flow battery cell is provided which includes a cathodic half cell and an anodic half cell separated by an electrolyte membrane, wherein the cathodic half cell contains a plurality of cathodic wires extending perpendicular or substantially perpendicular to and within the catholyte pathway and in contact with the catholyte, and each of the cathodic wires extends parallel or substantially parallel to each other. In some examples, the plurality of cathodic wires may have at least two arrays of cathodic wires, each array contains at least one row of cathodic wires, and each row extends along the catholyte pathway.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: October 13, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Gregory J. Wilson, Kyle M. Hanson
  • Publication number: 20150083600
    Abstract: Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and a counter electrode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, a counter electrode, a second processing fluid, and an anion permeable barrier layer. The anion permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain anionic species to transfer between the two fluids.
    Type: Application
    Filed: October 6, 2014
    Publication date: March 26, 2015
    Applicant: APPLIED Materials, Inc.
    Inventors: Rajesh Baskaran, Robert W. Batz, JR., Bioh Kim, Thomas L. Ritzdorf, John Lee Klocke, Kyle M. Hanson
  • Publication number: 20150069043
    Abstract: An anneal module for annealing semiconductor material wafers and similar substrates reduces particle contamination and oxygen ingress while providing uniform heating including for 500° C. processes. The anneal module may include a process chamber formed in a metal body having internal cooling lines. A hot plate has a pedestal supported on a thermal choke on the body. A gas distributor in the lid over the hot plate flows gas uniformly over the wafer. A transfer mechanism moves a hoop to shift the wafer between the hot plate and a cold plate.
    Type: Application
    Filed: September 12, 2013
    Publication date: March 12, 2015
    Inventors: Vincent Steffan Francischetti, Gregory J. Wilson, Kyle M. Hanson, Paul Wirth, Robert B. Moore
  • Patent number: 8961771
    Abstract: Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and a cation permeable barrier layer. The cation permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain cationic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit deposit properties (e.g., resistivity) within desired ranges.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: February 24, 2015
    Assignee: APPLIED Materials, Inc.
    Inventors: Rajesh Baskaran, Robert W. Batz, Jr., Bioh Kim, Tom L. Ritzdorf, John L. Klocke, Kyle M. Hanson
  • Publication number: 20150050752
    Abstract: In a method for removing metal at the edge of a wafer, including from a notch in the edge of the wafer, water is dripped or otherwise supplied onto the up-facing metal-plated front side of the wafer, while rotating the wafer. A metal etchant, such as sulfuric acid, is provided onto the back side of the wafer, at a flow rate multiple times greater than the water flow rate. The etchant flows over the edge of the wafer and the notch, and onto an annular edge on the front side of the wafer. The metal plated in the notch is removed, even if the notch has a radial depth greater than the width of the exclusion zone. The flow rates of the water and the etchant, and the rotation speed may be adjusted to provide a static water film, with the etchant diffusing into the outer edge of the water film.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 19, 2015
    Inventors: Kyle M. Hanson, Joy E. Peterson
  • Publication number: 20140356663
    Abstract: Embodiments of the invention generally provide for flow battery cells and systems containing a plurality of flow battery cells, and methods for improving metal plating within the flow battery cell, such as by flowing and exposing the catholyte to various types of cathodes. In one embodiment, a flow battery cell is provided which includes a cathodic half cell and an anodic half cell separated by an electrolyte membrane, wherein the cathodic half cell contains a plurality of cathodic wires extending perpendicular or substantially perpendicular to and within the catholyte pathway and in contact with the catholyte, and each of the cathodic wires extends parallel or substantially parallel to each other. In some examples, the plurality of cathodic wires may have at least two arrays of cathodic wires, each array contains at least one row of cathodic wires, and each row extends along the catholyte pathway.
    Type: Application
    Filed: August 14, 2014
    Publication date: December 4, 2014
    Inventors: Gregory J. WILSON, Kyle M. HANSON
  • Patent number: 8852417
    Abstract: Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and a counter electrode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, a counter electrode, a second processing fluid, and an anion permeable barrier layer. The anion permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain anionic species to transfer between the two fluids. Some of the described processes produce deposits over repeated plating cycles that exhibit resistivity values within desired ranges.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: October 7, 2014
    Assignee: APPLIED Materials, Inc.
    Inventors: Rajesh Baskaran, Robert W. Batz, Jr., Bioh Kim, Tom L. Ritzdorf, John Lee Klocke, Kyle M. Hanson
  • Publication number: 20140246324
    Abstract: Processes and systems for electrochemical deposition of a multi-component solder by processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and a cation permeable barrier layer. The cation permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain cationic species to transfer between the two fluids.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 4, 2014
    Applicant: APPLIED Materials, Inc.
    Inventors: Rajesh Baskaran, Robert W. Batz, JR., Bioh Kim, Thomas L. Ritzdorf, John L. Klocke, Kyle M. Hanson, Marvin L. Bernt, Ross Kulzer
  • Patent number: 8808888
    Abstract: Embodiments of the invention generally provide for flow battery cells and systems containing a plurality of flow battery cells, and methods for improving metal plating within the flow battery cell, such as by flowing and exposing the catholyte to various types of cathodes. In one embodiment, a flow battery cell is provided which includes a cathodic half cell and an anodic half cell separated by an electrolyte membrane, wherein the cathodic half cell contains a plurality of cathodic wires extending perpendicular or substantially perpendicular to and within the catholyte pathway and in contact with the catholyte, and each of the cathodic wires extends parallel or substantially parallel to each other. In some examples, the plurality of cathodic wires may have at least two arrays of cathodic wires, each array contains at least one row of cathodic wires, and each row extends along the catholyte pathway.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: August 19, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Gregory J. Wilson, Kyle M. Hanson
  • Publication number: 20140209472
    Abstract: Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and a cation permeable barrier layer. The cation permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain cationic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit deposit properties (e.g., resistivity) within desired ranges.
    Type: Application
    Filed: February 10, 2014
    Publication date: July 31, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Rajesh Baskaran, Robert W. Batz, JR., Bioh Kim, Tom L. Ritzdorf, John L. Klocke, Kyle M. Hanson