Patents by Inventor Lan Chang

Lan Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9649596
    Abstract: An ammonia slip control catalyst having a layer containing perovskite and a separate layer containing an SCR catalyst is described. The ammonia slip catalyst can have two stacked layers, with the top overlayer containing an SCR catalyst, and the bottom layer containing a perovskite. The ammonia slip catalyst can alternatively be arranged in sequential layers, with the SCR catalyst being upstream in the flow of exhaust gas relative to the perovskite. A system comprising the ammonia slip catalyst upstream of a PGM-containing ammonia oxidation catalyst and methods of using the system are described. The system allows for high ammonia oxidation with good nitrogen selectivity. Methods of making and using the ammonia slip catalyst to reduce ammonia slip and selectively convert ammonia to N2 are described.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: May 16, 2017
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Hsiao-Lan Chang, Hai-Ying Chen
  • Publication number: 20170056866
    Abstract: A three-way catalyst is disclosed. The three-way catalyst comprises a silver-containing extruded zeolite substrate and a catalyst layer disposed on the silver-containing extruded zeolite substrate. The catalyst layer comprises a supported platinum group metal catalyst comprising one or more platinum group metals and one or more inorganic oxide carriers. The invention also includes an exhaust system comprising the three-way catalyst. The three-way catalyst results in improved hydrocarbon storage and conversion, in particular during the cold start period.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Inventors: Hsiao-Lan CHANG, Hai-Ying CHEN, Kwangmo KOO, Jeffery Scott RIECK
  • Patent number: 9570651
    Abstract: A semiconductor device, such as an LED, includes a plurality of first conductivity type semiconductor nanowire cores located over a support, a continuous second conductivity type semiconductor layer extending over and around the cores, a plurality of interstitial voids located in the second conductivity type semiconductor layer and extending between the cores, and first electrode layer that contacts the second conductivity type semiconductor layer.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: February 14, 2017
    Assignee: GLO AB
    Inventors: Patrik Svensson, Linda Romano, Sungsoo Yi, Olga Kryliouk, Ying-Lan Chang
  • Publication number: 20170025514
    Abstract: A method for fabricating a semiconductor component includes forming an interlayer dielectric (ILD) layer on a substrate, forming a trench in the interlayer dielectric layer, forming a metal gate in the trench, removing a portion of the metal gate protruding from the ILD layer, reacting a reducing gas with the metal gate, and removing a top portion of the metal gate.
    Type: Application
    Filed: August 20, 2015
    Publication date: January 26, 2017
    Inventors: Po-Chi WU, Chai-Wei CHANG, Jung-Jui LI, Ya-Lan CHANG, Yi-Cheng CHAO
  • Publication number: 20170005191
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a dielectric layer over a substrate. The dielectric layer has a trench passing through the dielectric layer. The method includes forming a gate stack in the trench. The method includes performing a hydrogen-containing plasma process over the gate stack. The method includes removing a top portion of the gate stack to form a first recess surrounded by the gate stack and the dielectric layer. The method includes forming a cap layer in the first recess to fill the first recess.
    Type: Application
    Filed: September 11, 2015
    Publication date: January 5, 2017
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Po-Chi WU, Chai-Wei CHANG, Jung-Jui LI, Ya-Lan CHANG, Yi-Cheng CHAO
  • Patent number: 9437490
    Abstract: A semiconductor device includes a first substrate including a surface, and a pad array on the surface of the substrate, wherein the pad array comprises a first type pad and a second type pad located on a same level. The semiconductor device further includes a conductive bump connecting either the first type pad or the second type pad to a second substrate and a via connected a conductive feature at a different level to the first type pad and the via located within a projection area of the first type pad and directly contacting the first type pad. The semiconductor device also has a dielectric in the substrate and directly contacting the second type pad, wherein the second type pad is floated on the dielectric.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: September 6, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Tsung-Yuan Yu, Hao-Yi Tsai, Chao-Wen Shih, Hung-Yi Kuo, Pi-Lan Chang
  • Publication number: 20160228818
    Abstract: A three-way catalyst is disclosed. The three-way catalyst comprises a palladium component comprising palladium and a ceria-zirconia-alumina mixed or composite oxide, and also comprises a rhodium component comprising rhodium and a zirconia-containing material. The palladium component and the rhodium component are coated onto a silver-containing extruded molecular sieve substrate. The invention also includes an exhaust system comprising the three-way catalyst. The three-way catalyst results in improved hydrocarbon storage and conversion, in particular during the cold start period.
    Type: Application
    Filed: February 5, 2016
    Publication date: August 11, 2016
    Inventors: Hsiao-Lan CHANG, Hai-Ying CHEN
  • Patent number: 9357946
    Abstract: The present invention provides a direct sampler and detector for analytes found in exhaled breath condensate. Analytes in the breath condensate are detected instantaneously as they condense prior to reaching the sensor surface or condense directly on the sensor surface. Because the analysis or assay is performed immediately after patient exhalation, analyte stability is significantly improved providing accurate, reliable, consistent, and clinically applicable results. In certain embodiments, combined breath condensate/breath samplers and detectors are provided, enabling multiplexed analysis of condensed and vapor-phase analytes provided in a single sampling session. Breath is collected and directed to one or more subsystems. Within each subsystem, the breath portion is either condensed or prevented from condensing.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: June 7, 2016
    Assignee: Nanomix, Inc.
    Inventors: Bradley N. Johnson, Kanchan Joshi, Ying-Lan Chang, Ray Radtkey
  • Publication number: 20160123947
    Abstract: Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes such ammonia. An environmental control system employing nanoelectronic sensors is described. A personnel safety system configured as a disposable badge employing nanoelectronic sensors is described. A method of dynamic sampling and exposure of a sensor providing a number of operational advantages is described.
    Type: Application
    Filed: May 28, 2015
    Publication date: May 5, 2016
    Inventors: Mikhail Briman, Craig Bryant, Ying-Lan Chang, Jean-Christophe P. Gabriel, Shripal C. Ghandi, Bradley N. Johnson, Willem-Jan Ouborg, John Loren Passmore, Kastooriranganathan Ramakrishnan, Sergei Skarupo, Alexander Star, Christian Valcke
  • Patent number: 9291613
    Abstract: Sensors and detection systems suitable for measuring analytes, such as biomolecule, organic and inorganic species, including environmentally and medically relevant volatiles and gases, such as NO, NO2, CO2, NH3, H2, CO and the like, are provided. Certain embodiments of nanostructured sensor systems are configured for measurement of medically important gases in breath. Applications include the measurement of endogenous nitric oxide (NO) in breath, such as for the monitoring or diagnosis of asthma and other pulmonary conditions.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: March 22, 2016
    Assignee: Nanomix, Inc.
    Inventors: Craig Bryant, Ying-Lan Chang, Jean-Christophe P. Gabriel, Bradley N. Johnson, Oleksandr Kuzmych, William Mickelson, John Loren Passmore, Sergei Skarupo, Christian Valcke
  • Publication number: 20160001228
    Abstract: An ammonia slip control catalyst having a layer containing perovskite and a separate layer containing an SCR catalyst is described. The ammonia slip catalyst can have two stacked layers, with the top overlayer containing an SCR catalyst, and the bottom layer containing a perovskite. The ammonia slip catalyst can alternatively be arranged in sequential layers, with the SCR catalyst being upstream in the flow of exhaust gas relative to the perovskite. A system comprising the ammonia slip catalyst upstream of a PGM-containing ammonia oxidation catalyst and methods of using the system are described. The system allows for high ammonia oxidation with good nitrogen selectivity. Methods of making and using the ammonia slip catalyst to reduce ammonia slip and selectively convert ammonia to N2 are described.
    Type: Application
    Filed: July 1, 2015
    Publication date: January 7, 2016
    Inventors: HSIAO-LAN CHANG, Hai-Ying Chen
  • Publication number: 20150365821
    Abstract: A hardware-capability update method for a portable device with at least first and second SIM cards is provided. The method includes detecting whether a hardware capability for a first SIM card has to be responded to a requesting terminal; determining whether the hardware capability for the first SIM card can be responded immediately; transmitting the information about hardware capability to the requesting terminal when the hardware capability for the first SIM card can be responded immediately; and storing the information about pending updated hardware capability when the hardware capability for the first SIM card cannot be responded immediately.
    Type: Application
    Filed: June 13, 2014
    Publication date: December 17, 2015
    Inventors: Chia-Lan CHANG, Jian-Nong LI
  • Patent number: 9210568
    Abstract: A hardware-capability update method for a portable device with at least first and second SIM cards is provided. The method includes detecting whether a hardware capability for a first SIM card has to be responded to a requesting terminal; determining whether the hardware capability for the first SIM card can be responded immediately; transmitting the information about hardware capability to the requesting terminal when the hardware capability for the first SIM card can be responded immediately; and storing the information about pending updated hardware capability when the hardware capability for the first SIM card cannot be responded immediately.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: December 8, 2015
    Assignee: MEDIATEK INC.
    Inventors: Chia-Lan Chang, Jian-Nong Li
  • Patent number: 9103775
    Abstract: Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes inorganic gases, organic vapors, biomolecules, viruses and the like. A number of embodiments of capacitive sensors having alternative architectures are described. Particular examples include integrated cell membranes and membrane-like structures in nanoelectronic sensors.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: August 11, 2015
    Assignee: Nanomix, Inc.
    Inventors: Keith Bradley, Ying-Lan Chang, Jean-Christophe P. Gabriel, John Loren Passmore, Sergei Skarupo, Eugene Tu, Christian Valcke
  • Publication number: 20150221821
    Abstract: A semiconductor device, such as an LED, includes a plurality of first conductivity type semiconductor nanowire cores located over a support, a continuous second conductivity type semiconductor layer extending over and around the cores, a plurality of interstitial voids located in the second conductivity type semiconductor layer and extending between the cores, and first electrode layer that contacts the second conductivity type semiconductor layer.
    Type: Application
    Filed: April 16, 2015
    Publication date: August 6, 2015
    Inventors: Patrik Svensson, Linda Romano, Sungsoo Yi, Olga Kryliouk, Ying-Lan Chang
  • Publication number: 20150137355
    Abstract: A semiconductor device includes a first substrate including a surface, and a pad array on the surface of the substrate, wherein the pad array comprises a first type pad and a second type pad located on a same level. The semiconductor device further includes a conductive bump connecting either the first type pad or the second type pad to a second substrate and a via connected a conductive feature at a different level to the first type pad and the via located within a projection area of the first type pad and directly contacting the first type pad. The semiconductor device also has a dielectric in the substrate and directly contacting the second type pad, wherein the second type pad is floated on the dielectric.
    Type: Application
    Filed: March 31, 2014
    Publication date: May 21, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: TSUNG-YUAN YU, HAO-YI TSAI, CHAO-WEN SHIH, HUNG-YI KUO, PI-LAN CHANG
  • Patent number: 9035278
    Abstract: A semiconductor device, such as an LED, includes a plurality of first conductivity type semiconductor nanowire cores located over a support, a continuous second conductivity type semiconductor layer extending over and around the cores, a plurality of interstitial voids located in the second conductivity type semiconductor layer and extending between the cores, and first electrode layer that contacts the second conductivity type semiconductor layer.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: May 19, 2015
    Assignee: GLO AB
    Inventors: Patrik Svensson, Linda Romano, Sungsoo Yi, Olga Kryliouk, Ying-Lan Chang
  • Publication number: 20150118119
    Abstract: A three-way catalyst is disclosed. The three-way catalyst comprises a silver-containing extruded zeolite substrate and a catalyst layer disposed on the silver-containing extruded zeolite substrate. The catalyst layer comprises a supported platinum group metal catalyst comprising one or more platinum group metals and one or more inorganic oxide carriers. The invention also includes an exhaust system comprising the three-way catalyst. The three-way catalyst results in improved hydrocarbon storage and conversion, in particular during the cold start period.
    Type: Application
    Filed: October 30, 2014
    Publication date: April 30, 2015
    Inventors: Hsiao-Lan CHANG, Hai-Ying CHEN, Kwangmo KOO, Jeffery Scott RIECK
  • Patent number: 8993346
    Abstract: Provided herein is a new hybrid material system, mCNT, including magnetic carbon nanotubes for biological and medical sensing applications. In certain embodiments, the systems include magnetic material on the interior of carbon nanotubes (CNTs). The amount of magnetic particles inside CNTs may be such that mCNT can respond to small, low cost, portable magnet. The exterior CNT surface is kept intact for biomolecular attachments or other functionalizations. Performance enhancement with this novel material includes improved sensitivity, reduced response time, and reduced sample volume. According to various embodiments, the mCNTs are substrates for the adherence of molecules participating in these assays or as active sensing elements. Also provided are methods of fabricating two-dimensional mCNT and CNT networks on printed electrodes.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: March 31, 2015
    Assignee: Nanomix, Inc.
    Inventors: Ray Radtkey, Kanchan Joshi, Bradley N. Johnson, Ying-Lan Chang
  • Patent number: 8952308
    Abstract: A light source sensing device and a light source sensing method thereof are provided. The light source sensing device includes an optical sensor, a rod, a motor and a controller. The optical sensor is used for sensing lighting brightness emitted by the light source. The rod is disposed on a circular track which surrounds the optical sensor. When the light source irradiates the rod, a shadow is formed on a sensing surface of the optical sensor. The motor drives the rod to move along the circular track in a moving speed. The controller is coupled to the motor and the optical sensor, and controls the optical sensor to sample in a sampling frequency during a sampling period for obtaining a plurality of brightness values. The controller calculates and processes the brightness values for obtaining an irradiating angle of the light source.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 10, 2015
    Assignee: Wistron Corporation
    Inventor: Kuang-Lan Chang