Patents by Inventor Lanlan Zhong

Lanlan Zhong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11527437
    Abstract: Methods and apparatus for filling features on a substrate are provided herein. In some embodiments, a method of filling features on a substrate includes: depositing a first metallic material on the substrate and within a feature disposed in the substrate in a first process chamber via a chemical vapor deposition (CVD) process at a first temperature; depositing a second metallic material on the first metallic material in a second process chamber at a second temperature and at a first bias power to form a seed layer of the second metallic material; etching the seed layer in the second process chamber at a second bias power greater than the first bias power to form an intermix layer within the feature comprising the first metallic material and the second metallic material; and heating the substrate to a third temperature greater than the second temperature, causing a reflow of the second metallic material.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: December 13, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lanlan Zhong, Fuhong Zhang, Gang Shen, Feng Chen, Rui Li, Xiangjin Xie, Tae Hong Ha, Xianmin Tang
  • Patent number: 11492699
    Abstract: Methods and apparatus for processing a plurality of substrates are provided herein. In some embodiments, a method of processing a plurality of substrates in a physical vapor deposition (PVD) chamber includes: performing a series of reflow processes on a corresponding series of substrates over at least a portion of a life of a sputtering target disposed in the PVD chamber, wherein a substrate-to-target distance in the PVD chamber and a support-to-target distance within the PVD chamber are each controlled as a function of the life of the sputtering target.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: November 8, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Suhas Bangalore Umesh, Preetham Rao, Shirish A. Pethe, Fuhong Zhang, Kishor Kumar Kalathiparambil, Martin Lee Riker, Lanlan Zhong
  • Publication number: 20220259720
    Abstract: Methods and apparatus for processing a plurality of substrates are provided herein. In some embodiments, a method of processing a plurality of substrates in a physical vapor deposition (PVD) chamber includes: performing a series of reflow processes on a corresponding series of substrates over at least a portion of a life of a sputtering target disposed in the PVD chamber, wherein a substrate-to-target distance in the PVD chamber and a support-to-target distance within the PVD chamber are each controlled as a function of the life of the sputtering target.
    Type: Application
    Filed: February 17, 2021
    Publication date: August 18, 2022
    Inventors: Suhas BANGALORE UMESH, Preetham RAO, Shirish A. PETHE, Fuhong ZHANG, Kishor Kumar KALATHIPARAMBIL, Martin Lee RIKER, Lanlan ZHONG
  • Patent number: 11315771
    Abstract: Methods and apparatus for processing a substrate are provided herein. A method, for example, includes igniting a plasma at a first pressure within a processing volume of a process chamber; depositing sputter material from a target disposed within the processing volume while decreasing the first pressure to a second pressure within a first time frame while maintaining the plasma; continuing to deposit sputter material from the target while decreasing the second pressure to a third pressure within a second time frame less than the first time frame while maintaining the plasma; and continuing to deposit sputter material from the target while maintaining the third pressure for a third time frame that is greater than or equal to the second time frame while maintaining the plasma.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: April 26, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiangjin Xie, Fuhong Zhang, Shirish A. Pethe, Martin Lee Riker, Lewis Yuan Tse Lo, Lanlan Zhong, Xianmin Tang, Paul Dennis Connors
  • Patent number: 11289329
    Abstract: Methods and apparatus for method for filling a feature with copper. In some embodiments, the methods include: (a) depositing a first cobalt layer via a physical vapor deposition (PVD) process atop a substrate field and atop a sidewall and a bottom surface of a feature disposed in a substrate to form a first cobalt portion atop the substrate field and a second cobalt portion atop the sidewall; (b) depositing copper atop the first cobalt portion atop the substrate field; and (c) flowing the copper disposed atop the first cobalt portion atop the substrate field over the second cobalt portion and into the feature, wherein the first cobalt portion atop the substrate field reduces the mobility of copper compared to the mobility of copper over the second cobalt portion.
    Type: Grant
    Filed: January 25, 2020
    Date of Patent: March 29, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rui Li, Xiangjin Xie, Fuhong Zhang, Shirish Pethe, Adolph Allen, Lanlan Zhong, Xianmin Tang
  • Publication number: 20220084882
    Abstract: Methods and apparatus for filling features on a substrate are provided herein. In some embodiments, a method of filling features on a substrate includes: depositing a first metallic material on the substrate and within a feature disposed in the substrate in a first process chamber via a chemical vapor deposition (CVD) process at a first temperature; depositing a second metallic material on the first metallic material in a second process chamber at a second temperature and at a first bias power to form a seed layer of the second metallic material; etching the seed layer in the second process chamber at a second bias power greater than the first bias power to form an intermix layer within the feature comprising the first metallic material and the second metallic material; and heating the substrate to a third temperature greater than the second temperature, causing a reflow of the second metallic material.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 17, 2022
    Inventors: Lanlan ZHONG, Fuhong ZHANG, Gang SHEN, Feng CHEN, Rui LI, Xiangjin XIE, Tae Hong HA, Xianmin TANG
  • Publication number: 20220020578
    Abstract: Methods and apparatus for processing a substrate are provided herein. A method, for example, includes igniting a plasma at a first pressure within a processing volume of a process chamber; depositing sputter material from a target disposed within the processing volume while decreasing the first pressure to a second pressure within a first time frame while maintaining the plasma; continuing to deposit sputter material from the target while decreasing the second pressure to a third pressure within a second time frame less than the first time frame while maintaining the plasma; and continuing to deposit sputter material from the target while maintaining the third pressure for a third time frame that is greater than or equal to the second time frame while maintaining the plasma.
    Type: Application
    Filed: July 14, 2020
    Publication date: January 20, 2022
    Inventors: Xiangjin XIE, Fuhong ZHANG, Shirish A. PETHE, Martin Lee RIKER, Lewis Yuan Tse LO, Lanlan ZHONG, Xianmin TANG, Paul Dennis CONNORS
  • Patent number: 11222816
    Abstract: A method of filling structures on a substrate uses a semi-dynamic reflow process. The method may include depositing a metallic material on the substrate at a first temperature, heating the substrate to a second temperature higher than the first temperature wherein heating of the substrate causes a static reflow of the deposited metallic material on the substrate, stopping heating of the substrate, and depositing additional metallic material on the substrate causing a dynamic reflow of the deposited additional metallic material on the substrate. RF bias power may be applied during the dynamic reflow to facilitate in maintaining the temperature of the substrate.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: January 11, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lanlan Zhong, Shirish A. Pethe, Fuhong Zhang, Joung Joo Lee, Kishor Kalathiparambil, Xiangjin Xie, Xianmin Tang
  • Publication number: 20210391214
    Abstract: A method of filling structures on a substrate uses a semi-dynamic reflow process. The method may include depositing a metallic material on the substrate at a first temperature, heating the substrate to a second temperature higher than the first temperature wherein heating of the substrate causes a static reflow of the deposited metallic material on the substrate, stopping heating of the substrate, and depositing additional metallic material on the substrate causing a dynamic reflow of the deposited additional metallic material on the substrate. RF bias power may be applied during the dynamic reflow to facilitate in maintaining the temperature of the substrate.
    Type: Application
    Filed: June 16, 2020
    Publication date: December 16, 2021
    Inventors: Lanlan ZHONG, Shirish A. PETHE, Fuhong ZHANG, Joung Joo LEE, Kishor KALATHIPARAMBIL, Xiangjin XIE, Xianmin TANG
  • Patent number: 11152608
    Abstract: A silicon and tin based micro-structured material and methods are shown. In one example, the silicon and tin based micro-structured material is used as an electrode in a battery, such as a lithium ion battery.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: October 19, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Lorenzo Mangolini, Lanlan Zhong
  • Publication number: 20200350159
    Abstract: Methods and apparatus for method for filling a feature with copper. In some embodiments, the methods include: (a) depositing a first cobalt layer via a physical vapor deposition (PVD) process atop a substrate field and atop a sidewall and a bottom surface of a feature disposed in a substrate to form a first cobalt portion atop the substrate field and a second cobalt portion atop the sidewall; (b) depositing copper atop the first cobalt portion atop the substrate field; and (c) flowing the copper disposed atop the first cobalt portion atop the substrate field over the second cobalt portion and into the feature, wherein the first cobalt portion atop the substrate field reduces the mobility of copper compared to the mobility of copper over the second cobalt portion.
    Type: Application
    Filed: January 25, 2020
    Publication date: November 5, 2020
    Inventors: Rui LI, Xiangjin XIE, Fuhong Zhang, Shirish PETHE, Adolph ALLEN, Lanlan Zhong, Xianmin TANG
  • Publication number: 20190173077
    Abstract: A silicon and tin based micro-structured material and methods are shown. In one example, the silicon and tin based micro-structured material is used as an electrode in a battery, such as a lithium ion battery.
    Type: Application
    Filed: May 31, 2017
    Publication date: June 6, 2019
    Inventors: Lorenzo Mangolini, Lanlan Zhong
  • Patent number: 10084184
    Abstract: A nanostructured composite material includes a substrate, a porous layer including a highly structured material, and a coating including nanoparticles. A method for forming the nanostructured composite material can include forming a porous layer on a substrate, the porous layer including a highly structured material, and applying nanoparticles to the porous layer to form the nanostructured composite material.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: September 25, 2018
    Assignee: The Regents of the University of California
    Inventors: Lorenzo Mangolini, Lanlan Zhong
  • Publication number: 20140295269
    Abstract: A nanostructured composite material includes a substrate, a porous layer including a highly structured material, and a coating including nanoparticles. A method for forming the nanostructured composite material can include forming a porous layer on a substrate, the porous layer including a highly structured material, and applying nanoparticles to the porous layer to form the nanostructured composite material.
    Type: Application
    Filed: April 2, 2014
    Publication date: October 2, 2014
    Applicant: The Regents of the University of California
    Inventors: Lorenzo Mangolini, Lanlan Zhong
  • Patent number: D858468
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: September 3, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Martin Lee Riker, Lanlan Zhong, Fuhong Zhang, Zheng Wang
  • Patent number: D859333
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: September 10, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Martin Lee Riker, Lanlan Zhong, Fuhong Zhang, Zheng Wang
  • Patent number: D997111
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: August 29, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Martin Lee Riker, Fuhong Zhang, Lanlan Zhong, Kishor Kumar Kalathiparambil
  • Patent number: D998575
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: September 12, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Martin Lee Riker, Fuhong Zhang, Lanlan Zhong, Kishor Kumar Kalathiparambil