Patents by Inventor Lars Sundström
Lars Sundström has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10484214Abstract: A technique for cancelling or reducing crosstalk signals between controlled oscillators in an integrated circuit is provided. The technique involves an arrangement adapted to reduce a crosstalk signal generated by a first controlled oscillator to a second oscillator both comprised in the integrated circuit, wherein both controlled oscillators are configured to output a respective clock signal. The arrangement comprises a detector adapted to detect the crosstalk signal generated by the first controlled oscillator to the second controlled oscillator, a crosstalk cancellation circuit adapted to generate a cancellation signal having an amplitude substantially the same as that of the crosstalk signal and a phase substantially opposite to that of the crosstalk signal, and a cancellation signal injector adapted to introduce the cancellation signal into the second controlled oscillator.Type: GrantFiled: February 8, 2018Date of Patent: November 19, 2019Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)Inventors: Fenghao Mu, Lars Sundström
-
Publication number: 20190342134Abstract: In a multi-carrier wireless system, potential problems from reconfiguring mobile station resources to accommodate changes in component-carrier configuration are mitigated by inserting a guard period each time the configuration of component carriers changes, so that transceiver reconfiguration can be carried out without interfering with ongoing transmission. A base station is configured to transmit data to a mobile station according to a first configuration of two or more component carriers, to determine that a change of configuration to a second component carrier configuration is required, and to signal the change of configuration to the mobile station, using the first configuration of component carriers. The base station then refrains from transmitting data to the mobile station during a pre-determined guard interval of at least one transmission-time interval subsequent to the signaling of the change of configuration.Type: ApplicationFiled: July 22, 2019Publication date: November 7, 2019Inventors: Ghyslain Pelletier, Lars Sundstrom
-
Patent number: 10432293Abstract: The present disclosure relates to a wireless communication node comprising at least one array antenna configured to receive a radio signal, said array antenna comprising a plurality of receiving antenna devices, each of said antenna devices being connected to a respective receiving circuit which is configured for processing said radio signal. Each receiving circuit comprises a demodulator, an analog-to-digital converter and a decoder, the demodulator being configured to receive an analog signal from the corresponding receiving antenna device and to output a demodulated analog signal to said analog-to-digital converter which outputs a converted digital signal to the decoder. Furthermore, the node is configured for adding a direct current, DC, offset value to said demodulated analog signal wherein the combined offset values of said node follow a predetermined distribution of values, having a variance, over the analog-to-digital converters.Type: GrantFiled: April 2, 2015Date of Patent: October 1, 2019Assignee: Telefonaktiebolaget LM Ericsson (publ)Inventors: Ulf Gustavsson, Sven Jacobsson, Giuseppe Durisi, Vimar Björk, Mikael Coldrey, Lars Sundström
-
Patent number: 10411927Abstract: In a multi-carrier wireless system, potential problems from reconfiguring mobile station resources to accommodate changes in component-carrier configuration are mitigated by inserting a guard period each time the configuration of component carriers changes, so that transceiver reconfiguration can be carried out without interfering with ongoing transmission. A base station is configured to transmit data to a mobile station according to a first configuration of two or more component carriers, to determine that a change of configuration to a second component carrier configuration is required, and to signal the change of configuration to the mobile station, using the first configuration of component carriers. The base station then refrains from transmitting data to the mobile station during a pre-determined guard interval of at least one transmission-time interval subsequent to the signaling of the change of configuration.Type: GrantFiled: November 17, 2017Date of Patent: September 10, 2019Assignee: Optis Wireless Technology, LLCInventors: Ghyslain Pelletier, Lars Sundstrom
-
Publication number: 20190229678Abstract: A crystal oscillator circuit comprises a crystal; oscillator circuitry for generating a crystal oscillation signal at an oscillation frequency; and a kick-start circuit for injecting pulses into the crystal during a start-up period. The oscillator circuitry comprises a differential pair of transistors and can operate in an oscillating mode or a start-up mode. In the oscillating mode, the differential pair of transistors is cross-coupled so that a gate terminal of one transistor is coupled to a drain terminal of the other transistor, and vice versa, and the drain terminals are coupled to the crystal to generate the crystal oscillation signal. In the start-up mode, the kick-start circuit drives the gate terminals of the transistors with said pulses. This crystal oscillator circuit has a decreased start-up time compared to prior art solutions and a reduced influence of parasitic oscillations.Type: ApplicationFiled: April 4, 2019Publication date: July 25, 2019Inventors: Anna Karin Stenman, Stefanos Stefanidis, Lars Sundström, Tahmineh Torabian Esfahani
-
Patent number: 10312860Abstract: A crystal oscillator circuit comprises a crystal; oscillator circuitry for generating a crystal oscillation signal at an oscillation frequency; and a kick-start circuit for injecting pulses into the crystal during a start-up period. The oscillator circuitry comprises a differential pair of transistors and can operate in an oscillating mode or a start-up mode. In the oscillating mode, the differential pair of transistors are cross-coupled so that a gate terminal of one transistor is coupled to a drain terminal of the other transistor, and vice versa, and the drain terminals are coupled to the crystal to generate the crystal oscillation signal. In the start-up mode, the kick-start circuit drives the gate terminals of the transistors with said pulses. This crystal oscillator circuit has a decreased start-up time compared to prior art solutions and a reduced influence of parasitic oscillations.Type: GrantFiled: March 13, 2015Date of Patent: June 4, 2019Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)Inventors: Anna Karin Stenman, Stefanos Stefanidis, Lars Sundström, Tahmineh Torabian Esfahani
-
Publication number: 20190165980Abstract: A radio transmitter circuit (10) for transmitting signals within an uplink or sidelink frequency band of a cellular communications system is disclosed. It comprises a signal-generation circuit (20) configured to generate a transmission signal to be transmitted, and a radio front-end circuit (30), connected to the signal-generation circuit (20) at an input of the radio front-end circuit (30), for receiving the transmission signal, and configured to be connected to an antenna (40) at an output of the radio front-end circuit and to transmit the transmission signal to a remote node via said antenna (40). The signal-generation circuit (20) is configured to select a distortion function (D1, D2) based on a location of an allocated radio frequency resource, within said uplink or sidelink frequency band, for the transmission signal. Furthermore, the signal-generation circuit (20) is configured to generate an intermediate transmission signal, based on information to be transmitted in the transmission signal.Type: ApplicationFiled: October 13, 2016Publication date: May 30, 2019Inventors: Bengt Lindoff, Shehzad Ali Ashraf, Robert Baldemair, Lars Sundström
-
Patent number: 10306651Abstract: A method (20) of scheduling performed by a network node (3) is disclosed. The network node (3) comprises a distributed local oscillator architecture in which elements (181, . . . , 18i, . . . , 18N) of an antenna array (14) have at least partly uncorrelated local oscillator signals, and the network node (3) has wireless connectivity to at least two transmitter nodes (2a, 2b). The method (20) comprises calculating (21) a phase noise value between one or more layers received in each element (181, . . . , 18i, . . . , 18N) from a first transmitter node (2a) and one or more layers received in each element (181, . . . , 18i, . . . , 18N) from a second transmitter node (2b), and determining (22) a scheduling allocation for the at least two transmitter nodes (2a, 2b), taking the calculated phase noise value into account. A network node (3), computer program and computer program product are also provided.Type: GrantFiled: January 31, 2017Date of Patent: May 28, 2019Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)Inventors: Lars Sundström, Magnus Åström
-
Publication number: 20190158103Abstract: A TI ADC circuit (30) comprises a plurality of L analog inputs (32-1, 32-2, 32-3) and a plurality of L digital outputs (34-1, 34-2, 34-3). The i:th analog input (32-i) is for receiving an i:th analog input signal. The i:th digital output (34-i) is for outputting an i:th digital output signal, which is a digital representation of the i:th analog input signal. TI ADC circuit (30) comprises a set (90) of sub ADCs (100-1-100-K). The TI ADC circuit (30) is configured to generate one sample of each of the L digital output signals per conversion cycle. Each sub ADC (100-1-100-K) is configured to generate a digital output sample in M conversion cycles, wherein M is an integer >1. The number K of sub ADCs in the set (90) of sub ADCs (100-1-100-K) exceeds L·M.Type: ApplicationFiled: July 8, 2016Publication date: May 23, 2019Inventors: Lars Sundström, Martin Anderson
-
Publication number: 20190149155Abstract: A frequency generation solution controls an oscillator amplitude using two feedback paths to generate high frequency signals with lower power consumption and lower noise. A first feedback path provides continuous control of the oscillator amplitude responsive to an amplitude detected at the oscillator output. A second feedback path provides discrete control of the amplitude regulating parameter(s) of the oscillator responsive to the detected oscillator amplitude. Because the second feedback path enables the adjustment of the amplitude regulating parameter(s), the second feedback path enables an amplifier in the first feedback path to operate at a reduced gain, and thus also at a reduced power and a reduced noise, without jeopardizing the performance of the oscillator.Type: ApplicationFiled: January 11, 2019Publication date: May 16, 2019Inventors: Christian Elgaard, Lars Sundström
-
Patent number: 10230482Abstract: A radio transceiver circuit for FDD communication is disclosed. It comprises a transmitter for FDD signal transmission in a first frequency band, a first receiver for FDD signal reception in a second frequency band, separate from the first frequency band, and a duplexer. An output port of the transmitter is operatively connected to a first port of the duplexer for transmitting, through the duplexer, signals in said first frequency band. An input port of the first receiver is operatively connected to a second port of the duplexer for receiving, through the duplexer, signals in said second frequency band. The radio transceiver circuit comprises a second receiver, separate from the first receiver, for reception in said first frequency band. An input port of the second receiver is operatively connected to said first port of the duplexer for receiving, through the duplexer, signals in said first frequency band. A related radio communication apparatus is also disclosed.Type: GrantFiled: July 4, 2017Date of Patent: March 12, 2019Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (publ)Inventors: Lars Sundstrom, Sven Mattison, Anders Wallen
-
Patent number: 10225742Abstract: A method performed by a radio network node for determining a partitioning of a first signal into one or more parts to be transmitted to a first radio node. The radio network node comprises two or more antennas, each associated with a respective radio chain. The radio network node and the radio node operate in a wireless communications network. The radio network node determines a number of radio chains, to be used to send the first signal, and determines a partitioning of the first signal into the one or more parts of the first signal over the determined number of radio chains. The one or more parts are to be transmitted to the first radio node. The radio network node determines the number of radio chains and the partitioning based on a scheduling decision associated with the radio network node, and one or more parameters.Type: GrantFiled: June 17, 2014Date of Patent: March 5, 2019Assignee: Telefonaktiebolaget LM Ericsson (Publ)Inventors: Robert Baldemair, Johan Furuskog, Ning He, Lars Sundström, Karl Werner
-
Patent number: 10218361Abstract: A frequency generation solution controls an oscillator amplitude using two feedback paths to generate high frequency signals with lower power consumption and lower noise. A first feedback path provides continuous control of the oscillator amplitude responsive to an amplitude detected at the oscillator output. A second feedback path provides discrete control of the amplitude regulating parameter(s) of the oscillator responsive to the detected oscillator amplitude. Because the second feedback path enables the adjustment of the amplitude regulating parameter(s), the second feedback path enables an amplifier in the first feedback path to operate at a reduced gain, and thus also at a reduced power and a reduced noise, without jeopardizing the performance of the oscillator.Type: GrantFiled: May 13, 2016Date of Patent: February 26, 2019Assignee: Telefonaktiebolaget LM Ericsson (publ)Inventors: Christian Elgaard, Lars Sundström
-
Publication number: 20180295607Abstract: A network node and a wireless device for operation in a wireless communication network, wherein it is determined that a second scheduling bandwidth is needed, based on an amount or type of data buffered for transmission to the wireless device. Reconfiguration of a receiver bandwidth of the wireless device is initiated to match the second scheduling bandwidth, wherein the second scheduling bandwidth is larger than a first scheduling bandwidth currently associated with the wireless device, and wherein the first and second scheduling bandwidths respectively define the bandwidth used for scheduling transmissions to the wireless device. Methods and computer programs therefor are also disclosed.Type: ApplicationFiled: October 10, 2017Publication date: October 11, 2018Inventors: Bengt Lindoff, Robert Baldemair, Stefan Parkvall, Lars Sundström
-
Patent number: 10080146Abstract: Spatial sensor data, such as position, movement and rotation, which is provided by a sensor in a wireless communication device in a wireless communication system is used. By using the spatial sensor data it is possible to calculate predicted spatial data for use in controlling antenna beams for transmission as well as reception in the wireless communication system.Type: GrantFiled: March 12, 2014Date of Patent: September 18, 2018Assignee: Telefonaktiebolaget LM Ericsson (publ)Inventors: Lars Sundström, Daniel Araújo, Dennis Hui, Andres Reial
-
Publication number: 20180241402Abstract: A frequency generation solution controls an oscillator amplitude using two feedback paths to generate high frequency signals with lower power consumption and lower noise. A first feedback path provides continuous control of the oscillator amplitude responsive to an amplitude detected at the oscillator output. A second feedback path provides discrete control of the amplitude regulating parameter(s) of the oscillator responsive to the detected oscillator amplitude. Because the second feedback path enables the adjustment of the amplitude regulating parameter(s), the second feedback path enables an amplifier in the first feedback path to operate at a reduced gain, and thus also at a reduced power and a reduced noise, without jeopardizing the performance of the oscillator.Type: ApplicationFiled: May 13, 2016Publication date: August 23, 2018Inventors: Christian Elgaard, Lars Sundström
-
Publication number: 20180234979Abstract: A method (20) of scheduling performed by a network node (3) is disclosed. The network node (3) comprises a distributed local oscillator architecture in which elements (181, . . . , 18i, . . . , 18N) of an antenna array (14) have at least partly uncorrelated local oscillator signals, and the network node (3) has wireless connectivity to at least two transmitter nodes (2a, 2b). The method (20) comprises calculating (21) a phase noise value between one or more layers received in each element (181, . . . , 18i, . . . , 18N) from a first transmitter node (2a) and one or more layers received in each element (181, . . . , 18i, . . . , 18N) from a second transmitter node (2b), and determining (22) a scheduling allocation for the at least two transmitter nodes (2a, 2b), taking the calculated phase noise value into account. A network node (3), computer program and computer program product are also provided.Type: ApplicationFiled: January 31, 2017Publication date: August 16, 2018Applicant: Telefonaktiebolaget LM Ericsson (publ)Inventors: Lars Sundström, Magnus Åström
-
Patent number: 10027352Abstract: A radio frequency receiver having a plurality of parallel receiving paths, wherein each path can receive a radio frequency signal in one of a plurality of radio frequency bands and amplify the received signal in a low noise amplifier. The amplified signals from the plurality of parallel paths are combined to one combined radio frequency signal in a common summation node and down-converted to a lower frequency signal in a mixer circuit. Each low noise amplifier comprises a low noise transconductance circuit providing a current signal to drive the common summation node, and an automatic gain control circuit in each path compensates for variations in signal strength independently of signal strengths of signals received by the other receiving paths. The receiver is suitable for simultaneous multiple band reception, where received signal strength can vary between the frequency bands.Type: GrantFiled: July 17, 2017Date of Patent: July 17, 2018Assignee: Telefonaktiebolaget LM Ericsson (Publ)Inventors: Daniele Mastantuono, Sven Mattisson, Roland Strandberg, Lars Sundström
-
Publication number: 20180198411Abstract: A crystal oscillator circuit comprises a crystal (X1); oscillator circuitry (31) for generating a crystal oscillation signal at an oscillation frequency; and a kick-start circuit (12) for injecting pulses into the crystal during a start-up period. The oscillator circuitry (31) comprises a differential pair of transistors (M1, M2) and can operate in an oscillating mode or a start-up mode. In the oscillating mode, the differential pair of transistors are cross-coupled so that a gate terminal of one transistor (M1) is coupled to a drain terminal of the other transistor (M2), and vice versa, and the drain terminals are coupled to the crystal (X1) to generate the crystal oscillation signal. In the start-up mode, the kick-start circuit (12) drives the gate terminals of the transistors (M1, M2) with said pulses. This crystal oscillator circuit has a decreased start-up time compared to prior art solutions and a reduced influence of parasitic oscillations.Type: ApplicationFiled: March 13, 2015Publication date: July 12, 2018Inventors: Anna Karin Stenman, Stefanos Stefanidis, Lars Sundström, Tahmineh Torabian Esfahani
-
Publication number: 20180183634Abstract: A technique for cancelling or reducing crosstalk signals between controlled oscillators in an integrated circuit is provided. The technique involves an arrangement adapted to reduce a crosstalk signal generated by a first controlled oscillator to a second oscillator both comprised in the integrated circuit, wherein both controlled oscillators are configured to output a respective clock signal. The arrangement comprises a detector adapted to detect the crosstalk signal generated by the first controlled oscillator to the second controlled oscillator, a crosstalk cancellation circuit adapted to generate a cancellation signal having an amplitude substantially the same as that of the crosstalk signal and a phase substantially opposite to that of the crosstalk signal, and a cancellation signal injector adapted to introduce the cancellation signal into the second controlled oscillator.Type: ApplicationFiled: February 8, 2018Publication date: June 28, 2018Applicant: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)Inventors: Fenghao MU, Lars SUNDSTRÖM