Patents by Inventor Lawrence A. Clevenger

Lawrence A. Clevenger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10770511
    Abstract: A magnetic random access memory (MRAM) device includes a conductor disposed in an insulating material of a lower wiring layer, a magnetic tunnel junction (MTJ) structure formed in an upper wiring layer, and a landing pad formed in an intermediary wiring layer between the lower and upper wiring layers, the landing pad extending from a top surface of the conductor to a height above the intermediary wiring layer, wherein the landing pad connects the MJT structure to the conductor.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: September 8, 2020
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Nicholas A. Lanzillo, Michael Rizzolo, Theodorus E. Standaert
  • Publication number: 20200279913
    Abstract: Embodiments of the invention are directed to a nanosheet field effect transistor (FET) device. A non-limiting example of the nanosheet FET device includes a stack of channel nanosheets over a substrate, along with a source or drain (S/D) trench in a predetermined region of the substrate. The predetermined region of the substrate includes a region over which a S/D region of the nanosheet FET is formed. The S/D region of the nanosheet FET is formed at ends of a bottommost one of the stack of channel nanosheets. An isolation barrier is formed in the S/D trench. The isolation barrier is configured to substantially prevent the S/D region from being electrically coupled to the substrate.
    Type: Application
    Filed: March 1, 2019
    Publication date: September 3, 2020
    Inventors: Mona A. Ebrish, Fee Li Lie, Nicolas Loubet, Gauri Karve, Indira Seshadri, Lawrence A. Clevenger, Leigh Anne H. Clevenger
  • Patent number: 10763160
    Abstract: Techniques are provided to fabricate semiconductor devices. For example, a semiconductor device can include an alternating arrangement of vertical metallic lines defining openings therebetween on a substrate. An interlevel dielectric layer is disposed on a consecutive first opening and a second opening to seal an air gap between a top surface of the substrate and a bottom surface of the interlevel dielectric layer.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: September 1, 2020
    Assignee: International Business Machines Corporation
    Inventors: Christopher J. Penny, Benjamin D. Briggs, Michael Rizzolo, Lawrence A. Clevenger, Huai Huang, Hosadurga Shobha
  • Patent number: 10752039
    Abstract: A document including a Directed Self-Assembly (DSA) pattern including a unique and randomized pattern embedded on the document, where the DSA is formed by using two different-length polymer chains.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: August 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Benjamin David Briggs, Lawrence A. Clevenger, Bartlet H. DeProspo, Michael Rizzolo
  • Patent number: 10755969
    Abstract: Multi-patterning methods are provided for use in fabricating an array of metal lines comprising metal lines with different widths. For example, patterning methods implement spacer-is-dielectric (SID)-based self-aligned double patterning (SADP) methods for fabricating an array of metal lines comprising elongated metal lines with different widths, wherein an “unblock” mask is utilized as part of the process flow to overlap mandrel assigned and non-mandrel assigned features in a given SADP pattern to define regions to unblock a metal fill (remove dielectric material between wires) in a dielectric layer between defined metal lines of an a SADP pattern thus enabling the formation of wide metal lines within any region of a pattern of elongated metal lines formed with a minimum feature width.
    Type: Grant
    Filed: January 1, 2018
    Date of Patent: August 25, 2020
    Assignee: International Business Machines Corporation
    Inventors: Albert Chu, Kafai Lai, Lawrence A. Clevenger
  • Patent number: 10756260
    Abstract: A method of forming magnetic device structures and electrical contacts, including removing a portion of a second interlayer dielectric (ILD) layer to expose an underlying portion of a cap layer in a first device region, wherein the cap layer is on a first ILD layer, while leaving an ILD block in a second device region, forming a spacer layer on the exposed portion of the cap layer in the first device region, forming an electrical contact layer on the spacer layer in the first device region, forming a magnetic device layer on the electrical contact layer and ILD block, removing portions of the magnetic device layer to form a magnetic device stack on the ILD block, and removing portions of the electrical contact layer to form electrical contact pillars, wherein the portions of the electrical contact layer and portions of the magnetic device layer are removed at the same time.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: August 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Liying Jiang, Sebastian Naczas, Michael Rizzolo, Chih-Chao Yang
  • Publication number: 20200266100
    Abstract: Techniques to improve CD width and depth uniformity between features with different layout densities are provided. In one aspect, a method of forming a contact structure includes: patterning features in different regions of a dielectric at different layout densities whereby, due to etch loading effects, the features are patterned to different depths in the dielectric and have different bottom dimensions; depositing a sacrificial spacer into/lining the features whereby some of the features are pinched-off by the sacrificial spacer; opening up the sacrificial spacer at bottoms of one or more of the features that are not pinched-off by the sacrificial spacer; selectively extending the one or more features in the dielectric, such that the one or more features have a discontinuous taper with a stepped sidewall profile; removing the sacrificial spacer; and filling the features with a conductive material to form the contact structure. A contact structure is also provided.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 20, 2020
    Inventors: Nicole Saulnier, Indira Seshadri, Lawrence A. Clevenger, Leigh Anne H. Clevenger, Gauri Karve, Fee Li Lie, Isabel Cristina Chu, Hosadurga Shobha, Ekmini A. De Silva
  • Patent number: 10747850
    Abstract: Embodiments include method, systems and computer program products for providing medication-related feedback. Aspects include receiving medication information for a patient. Aspects also include receiving a biological, behavioral, or environmental output from a sensor. Aspects also include determining, based upon the biological, behavioral, or environmental output and the medication information for the patient, whether a medication dose is needed. Aspects also include, based on a determination that the medication dose is needed, generating an alert.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: August 18, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Maryam Ashoori, Benjamin D. Briggs, Lawrence A. Clevenger, Leigh Anne H. Clevenger, Jonathan H. Connell, II, Nalini K. Ratha, Michael Rizzolo
  • Patent number: 10746782
    Abstract: Embodiments of the invention are directed to a semiconductor wafer test system. A non-limiting example of the test system includes a controller, a sensing system communicatively coupled to the controller, and a stress source communicatively coupled to the controller. The controller is configured to control the stress source to deliver an applied stress to a targeted stress area of a semiconductor wafer. The sensing system is configured to detect the applied stress and provide data of the applied stress to the controller. The controller is further configured to control the stress source based at least in part on the data of the applied stress.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: August 18, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Michael Rizzolo, Theodorus E. Standaert, James H. Stathis
  • Patent number: 10739397
    Abstract: Embodiments of the invention are directed to a semiconductor wafer test system. A non-limiting example of the test system includes a controller, a sensing system communicatively coupled to the controller, and a stress source communicatively coupled to the controller. The controller is configured to control the stress source to deliver an applied stress to a targeted stress area of a semiconductor wafer. The sensing system is configured to detect the applied stress and provide data of the applied stress to the controller. The controller is further configured to control the stress source based at least in part on the data of the applied stress.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: August 11, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Michael Rizzolo, Theodorus E. Standaert, James H. Stathis
  • Patent number: 10741751
    Abstract: A semiconductor structure includes a memory element disposed on a first metal layer. A first cap layer is disposed on the first metal layer and sidewalls of the memory element. A first dielectric layer is disposed on a top surface of the first cap layer on the first metal layer and a portion of the first cap layer on the sidewalls of the memory element. A second metal layer is disposed on the first dielectric layer and sidewalls of the first cap layer. A second cap layer is disposed on a top surface of the second metal layer. A second dielectric layer is disposed on the second cap layer. A via is in the second dielectric layer and exposes a top surface of the memory element. A third metal layer is disposed on the second dielectric layer and in the via.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: August 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Nicholas A. Lanzillo, Benjamin D. Briggs, Chih-Chao Yang, Hsueh-Chung Chen, Lawrence A. Clevenger
  • Patent number: 10740938
    Abstract: Embodiments include methods, systems, and computer program products for remediating a color vision deficiency. Aspects include receiving a user profile. Aspects also include receiving a real time location image including a plurality of objects. Aspects also include determining an image context. Aspects also include generating a situational notification based at least in part upon the user profile, the real time location image, and the image context.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: August 11, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yuk L. Chan, Lawrence A. Clevenger, Alain Loiseau, Deepti M. Naphade
  • Patent number: 10741449
    Abstract: A semiconductor device includes a first gate stack arranged about a first nanowire and a second nanowire, the first nanowire is arranged above a second nanowire, the first nanowire is connected to a first source/drain region and a second source/drain region. A second gate stack is arranged about a third nanowire and a fourth nanowire, the third nanowire is arranged above a fourth nanowire, the third nanowire is connected to a third source/drain region and a fourth source/drain region. An insulator layer having a first thickness is arranged adjacent to the first gate stack.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: August 11, 2020
    Assignee: Tessera, Inc.
    Inventors: Kangguo Cheng, Lawrence A. Clevenger, Balasubramanian S. Pranatharthiharan, John Zhang
  • Publication number: 20200251386
    Abstract: Metal interconnect structures are reworked to address possible voids or other defects. Etching of initially deposited interconnect metal to open voids is followed by reflow to accumulate interconnect metal at the bottoms of trenches. Additional interconnect metal is deposited over the initially deposited interconnect metal by electroplating and/or electroless plating. Additional diffusion barrier material may be deposited and patterned prior to deposition of the additional interconnect material.
    Type: Application
    Filed: April 24, 2020
    Publication date: August 6, 2020
    Inventors: Prasad Bhosale, Terry A. Spooner, Chih-Chao Yang, Lawrence A. Clevenger
  • Patent number: 10734289
    Abstract: A semiconductor device is formed to include a fin structure, a first trench at a first lateral end of the fin, a second trench at a second lateral end of the fin, and a filler filled on a first traverse side of the fin and a second traverse side of the fin. The filler is contained between the first trench and the second trench, and oxidized in-place to cause a stress to be exerted on the first and second traverse sides of the fin, the stress causing the fin to exhibit a tensile strain in a lateral running direction of the fin.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: August 4, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Junli Wang, Lawrence A. Clevenger, Carl Radens, John H. Zhang
  • Patent number: 10734475
    Abstract: A method is presented for forming a stacked metal-insular-metal (MIM) capacitor with self-aligned contact. The method includes forming a first electrode plate over a first interlayer dielectric (ILD), forming a first spacer adjacent the first electrode plate, forming a first insulating layer over the first electrode plate, forming a second electrode plate over the first insulating layer, and forming a second spacer adjacent the second electrode plate and the first insulating layer. The method further includes forming a second insulating layer over the second electrode plate, forming a third electrode plate over the second insulating layer, forming a third spacer adjacent the third electrode plate and the second insulating layer, and forming a second ILD over the third electrode plate. The method also includes forming a first via through the second ILD and directly contacting the second spacer such to prevent the first via from contacting the second electrode plate.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: August 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Robert Allen Groves, Hemanth Jagannathan, Lawrence A. Clevenger, Griselda Bonilla
  • Patent number: 10734523
    Abstract: A method of forming a nanosheet device is provided. The method includes forming a nanosheet channel layer stack and dummy gate structure on a substrate. The method further includes forming a curved recess in the substrate surface adjacent to the nanosheet channel layer stack. The method further includes depositing a protective layer on the curved recess, dummy gate structure, and exposed sidewall surfaces of the nanosheet layer stack, and removing a portion of the protective layer on the curved recess to form a downward-spiked ridge around the rim of the curved recess. The method further includes extending the curved recess deeper into the substrate to form an extended recess, and forming a sacrificial layer at the surface of the extended recess in the substrate.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: August 4, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Fee Li Lie, Mona Ebrish, Ekmini A. De Silva, Indira Seshadri, Gauri Karve, Lawrence A. Clevenger, Leigh Anne H. Clevenger, Nicolas Loubet
  • Patent number: 10734579
    Abstract: Embodiments of the invention are directed to a resistive switching device (RSD) that includes a first terminal, a second terminal, an active region having a switchable conduction state, and a protuberant contact communicatively coupled to the first terminal. The protuberant contact is configured to communicatively couple the first terminal through a first barrier liner to a first electrode line of a crossbar array. In embodiments of the invention, the protuberant contact is positioned with respect to the first barrier liner such that the first barrier liner does not impacting the switchable conduction state of the active region. In embodiments of the invention, the protuberant contact is positioned with respect to the first barrier liner such that the first barrier liner does not directly contact the first terminal.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: August 4, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Chih-Chao Yang, Lawrence A. Clevenger
  • Patent number: 10734277
    Abstract: Back end of line metallization structures and processes of fabricating the metallization structures generally include a top via integration scheme. The top via integration scheme integrally forms the via on top of trench. Thus, the via is fully aligned and can be of a desired critical dimension.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: August 4, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, Lawrence A. Clevenger, Benjamin D. Briggs, Brent Anderson
  • Publication number: 20200243379
    Abstract: Techniques for dielectric damage-free interconnects are provided. In one aspect, a method for forming a Cu interconnect structure includes: forming a via and trench in a dielectric over a metal line M1; depositing a first barrier layer into the via and trench; removing the first barrier layer from the via and trench bottoms using neutral beam oxidation, and removing oxidized portions of the first barrier layer such that the first barrier layer remains along only sidewalls of the via and trench; depositing Cu into the via in direct contact with the metal line M1 to form a via V1; lining the trench with a second barrier layer; and depositing Cu into the trench to form a metal line M2. The second barrier layer can instead include Mn or optionally CuMn so as to further serve as a seed layer. A Cu interconnect structure is also provided.
    Type: Application
    Filed: April 15, 2020
    Publication date: July 30, 2020
    Inventors: Koichi Motoyama, Benjamin D. Briggs, Gangadhara Raja Muthinti, Cornelius Brown Peethala, Lawrence A. Clevenger