Patents by Inventor Leathen Shi

Leathen Shi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100187607
    Abstract: A semiconductor wafer structure for manufacturing integrated circuit devices includes a bulk substrate; a lower insulating layer formed on the bulk substrate, the lower insulating layer formed from a pair of separate insulation layers having a bonding interface therebetween; an electrically conductive layer formed on the lower insulating layer, the electrically conductive layer further having one or more shallow trench isolation (STI) regions formed therein; an etch stop layer formed on the electrically conductive layer and the one or more STI regions; an upper insulating layer formed on the etch stop layer; and a semiconductor layer formed on the upper insulating layer. A subsequent active area level STI scheme, in conjunction with front gate formation over the semiconductor layer, is also disclosed.
    Type: Application
    Filed: March 31, 2010
    Publication date: July 29, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, David R. Greenberg, Amlan Majumdar, Leathen Shi, Jeng-Bang Yau
  • Publication number: 20100176482
    Abstract: A semiconductor substrate structure for manufacturing integrated circuit devices includes a bulk substrate; a lower insulating layer formed on the bulk substrate, the lower insulating layer formed from a pair of separate insulation layers having a bonding interface therebetween; an electrically conductive layer formed on the lower insulating layer; an insulator with etch stop characteristics formed on the electrically conductive layer; an upper insulating layer formed on the etch stop layer; and a semiconductor layer formed on the upper insulating layer. A scheme of subsequently building a dual-depth shallow trench isolation with the deeper STI in the back gate layer self-aligned to the shallower STI in the active region in such a semiconductor substrate is also disclosed.
    Type: Application
    Filed: January 12, 2009
    Publication date: July 15, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINE CORPORATION
    Inventors: Robert H. Dennard, David R. Greenberg, Amlan Majumdar, Leathen Shi, Jeng-Bang Yau
  • Publication number: 20100176495
    Abstract: A semiconductor wafer structure for integrated circuit devices includes a bulk substrate; a lower insulating layer formed on the bulk substrate; an electrically conductive layer formed on the lower insulating layer; an upper insulating layer formed on the electrically conductive layer, the upper insulating layer formed from a pair of separate insulation layers having a bonding interface therebetween; and a semiconductor layer formed on the upper insulating layer.
    Type: Application
    Filed: January 12, 2009
    Publication date: July 15, 2010
    Applicant: International Business Machines Corporation
    Inventors: Jack O. Chu, Robert H. Dennard, John A. Ott, Devendra K. Sadana, Leathen Shi
  • Publication number: 20100176453
    Abstract: A semiconductor wafer structure for manufacturing integrated circuit devices includes a bulk substrate; a lower insulating layer formed on the bulk substrate, the lower insulating layer formed from a pair of separate insulation layers having a bonding interface therebetween; an electrically conductive layer formed on the lower insulating layer, the electrically conductive layer further having one or more shallow trench isolation (STI) regions formed therein; an etch stop layer formed on the electrically conductive layer and the one or more STI regions; an upper insulating layer formed on the etch stop layer; and a semiconductor layer formed on the upper insulating layer. A subsequent active area level STI scheme, in conjunction with front gate formation over the semiconductor layer, is also disclosed.
    Type: Application
    Filed: January 12, 2009
    Publication date: July 15, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, David R. Greenberg, Amlan Majumdar, Leathen Shi, Jeng-Bang Yau
  • Patent number: 7713837
    Abstract: Described is a wet chemical surface treatment involving NH4OH that enables extremely strong direct bonding of two wafer such as semiconductors (e.g., Si) to insulators (e.g., SiO2) at low temperatures (less than or equal to 400° C.). Surface energies as high as ˜4835±675 mJ/m2 of the bonded interface have been achieved using some of these surface treatments. This value is comparable to the values reported for significantly higher processing temperatures (less than 1000° C.). Void free bonding interfaces with excellent yield and surface energies of ˜2500 mJ/m2 have also be achieved herein.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: May 11, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Kathryn Wilder Guarini, Erin C. Jones, Antonio F. Saavedra, Jr., Leathen Shi, Dinkar V. Singh
  • Patent number: 7704815
    Abstract: A method for achieving a substantially defect free SGOI substrate which includes a SiGe layer that has a high Ge content of greater than about 25 atomic % using a low temperature wafer bonding technique is described. The wafer bonding process described in the present application includes an initial prebonding annealing step that is capable of forming a bonding interface comprising elements of Si, Ge and O, i.e., interfacial SiGeO layer, between a SiGe layer and a low temperature oxide layer. The present invention also provides the SGOI substrate and structure that contains the same.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: April 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: Jack O. Chu, Michael A. Cobb, Philip A. Saunders, Leathen Shi
  • Patent number: 7691688
    Abstract: Methods of forming a strained Si-containing hybrid substrate are provided as well as the strained Si-containing hybrid substrate formed by the methods. In the methods of the present invention, a strained Si layer is formed overlying a regrown semiconductor material, a second semiconducting layer, or both. In accordance with the present invention, the strained Si layer has the same crystallographic orientation as either the regrown semiconductor layer or the second semiconducting layer. The methods provide a hybrid substrate in which at least one of the device layers includes strained Si.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: April 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Meikei Ieong, Alexander Reznicek, Devendra K. Sadana, Leathen Shi, Min Yang
  • Patent number: 7566631
    Abstract: Described is a wet chemical surface treatment involving NH4OH that enables extremely strong direct bonding of two wafer such as semiconductors (e.g., Si) to insulators (e.g., SiO2) at low temperatures (less than or equal to 400° C.). Surface energies as high as ˜4835±675 mJ/m2 of the bonded interface have been achieved using some of these surface treatments. This value is comparable to the values reported for significantly higher processing temperatures (less than 1000° C.). Void free bonding interfaces with excellent yield and surface energies of ˜2500 mJ/m2 have also be achieved herein.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: July 28, 2009
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Kathryn Wilder Guarini, Erin C. Jones, Antonio F. Saavedra, Jr., Leathen Shi, Dinkar V. Singh
  • Patent number: 7528056
    Abstract: A cost-effective and simple method of fabricating strained semiconductor-on-insulator (SSOI) structures which avoids epitaxial growth and subsequent wafer bonding processing steps is provided. In accordance with the present invention, a strain-memorization technique is used to create strained semiconductor regions on a SOI substrate. The transistors formed on the strained semiconductor regions have higher carrier mobility because the Si regions have been strained. The inventive method includes (i) ion implantation to create a thin amorphization layer, (ii) deposition of a high stress film on the amorphization layer, (iii) a thermal anneal to recrystallize the amorphization layer, and (iv) removal of the stress film. Because the SOI substrate was under stress during the recrystallization process, the final semiconductor layer will be under stress as well. The amount of stress and the polaity (tensile or compressive) of the stress can be controlled by the type and thickness of the stress films.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: May 5, 2009
    Assignee: International Business Machines Corporation
    Inventors: Meikei Ieong, Douglas C. La Tulipe, Jr., Leathen Shi, Anna W. Topol, James Vichiconti, Albert M. Young
  • Patent number: 7521735
    Abstract: A semiconductor on insulator substrate and a method of fabricating the substrate. The substrate including: a first crystalline semiconductor layer and a second crystalline semiconductor layer; and an insulating layer bonding a bottom surface of the first crystalline semiconductor layer to a top surface of the second crystalline semiconductor layer, a first crystal direction of the first crystalline semiconductor layer aligned relative to a second crystal direction of the second crystalline semiconductor layer, the first crystal direction different from the second crystal direction.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: April 21, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, David V. Horak, Charles W. Koburger, III, Leathen Shi
  • Patent number: 7507989
    Abstract: A semiconductor structure for use as a template for forming high-performance metal oxide semiconductor field effect transistor (MOSFET) devices is provided. More specifically, the present invention provides a structure that includes a SiGe-on-insulator substrate including a tensile-strained SiGe alloy layer located atop an insulating layer; and a strained Si layer atop the tensile-strained SiGe alloy layer. The present invention also provides a method of forming the tensile-strained SGOI substrate as well as the heterostructure described above. The method of the present invention decouples the preference for high strain in the strained Si layer and the Ge content in the underlying layer by providing a tensile-strained SiGe alloy layer directly atop on an insulating layer.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: March 24, 2009
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Jack O. Chu, Kern Rim, Leathen Shi
  • Patent number: 7488630
    Abstract: A method which is intended to facilitate and/or simplify the process of fabricating interlayer vias by selective modification of the FEOL film stack on a transfer wafer is provided. Specifically, the present invention provides a method in which two dimensional devices are prepared for subsequent integration in a third dimension at the transition between normal FEOL processes by using an existing interlayer contact mask to define regions in which layers of undesirable dielectrics and metal are selectively removed and refilled with a middle-of-the-line (MOL) compatible dielectric film. As presented, the inventive method is compatible with standard FEOL/MOL integration schemes, and it guarantees a homogeneous dielectric film stack specifically in areas where interlayer contacts are to be formed, thus allowing the option of a straightforward integration path, if desired.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: February 10, 2009
    Assignee: International Business Machines Corporation
    Inventors: David J. Frank, Douglas C. La Tulipe, Jr., Leathen Shi, Steven E. Steen, Anna W. Topol
  • Patent number: 7485518
    Abstract: A semiconductor structure for use as a template for forming high-performance metal oxide semiconductor field effect transistor (MOSFET) devices is provided. More specifically, the present invention provides a structure that includes a SiGe-on-insulator substrate including a tensile-strained SiGe alloy layer located atop an insulating layer; and a strained Si layer atop the tensile-strained SiGe alloy layer. The present invention also provides a method of forming the tensile-strained SGOI substrate as well as the heterostructure described above. The method of the present invention decouples the preference for high strain in the strained Si layer and the Ge content in the underlying layer by providing a tensile-strained SiGe alloy layer directly atop on an insulating layer.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Jack Q Chan, Kern Rim, Leathen Shi
  • Publication number: 20090004831
    Abstract: A method for achieving a substantially defect free SGOI substrate which includes a SiGe layer that has a high Ge content of greater than about 25 atomic % using a low temperature wafer bonding technique is described. The wafer bonding process described in the present application includes an initial prebonding annealing step that is capable of forming a bonding interface comprising elements of Si, Ge and O, i.e., interfacial SiGeO layer, between a SiGe layer and a low temperature oxide layer. The present invention also provides the SGOI substrate and structure that contains the same.
    Type: Application
    Filed: June 17, 2008
    Publication date: January 1, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jack O. Chu, Michael A. Cobb, Philip A. Saunders, Leathen Shi
  • Patent number: 7445977
    Abstract: A method for achieving a substantially defect free SGOI substrate which includes a SiGe layer that has a high Ge content of greater than about 25 atomic % using a low temperature wafer bonding technique is described. The wafer bonding process described in the present application includes an initial prebonding annealing step that is capable of forming a bonding interface comprising elements of Si, Ge and O, i.e., interfacial SiGeO layer, between a SiGe layer and a low temperature oxide layer. The present invention also provides the SGOI substrate and structure that contains the same.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: November 4, 2008
    Assignee: International Business Machines Corporation
    Inventors: Jack O. Chu, Michael A. Cobb, Philip A. Saunders, Leathen Shi
  • Publication number: 20080261055
    Abstract: A method for achieving a substantially defect free SGOI substrate which includes a SiGe layer that has a high Ge content of greater than about 25 atomic % using a low temperature wafer bonding technique is described.
    Type: Application
    Filed: April 23, 2007
    Publication date: October 23, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jack O. Chu, Alexander Reznicek, Philip A. Saunders, Leathen Shi
  • Publication number: 20080254594
    Abstract: Methods of forming a strained Si-containing hybrid substrate are provided as well as the strained Si-containing hybrid substrate formed by the methods. In the methods of the present invention, a strained Si layer is formed overlying a regrown semiconductor material, a second semiconducting layer, or both. In accordance with the present invention, the strained Si layer has the same crystallographic orientation as either the regrown semiconductor layer or the second semiconducting layer. The methods provide a hybrid substrate in which at least one of the device layers includes strained Si.
    Type: Application
    Filed: June 23, 2008
    Publication date: October 16, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. Chan, Meikei Ieong, Alexander Reznicek, Devendra K. Sadana, Leathen Shi, Min Yang
  • Publication number: 20080227270
    Abstract: Described is a wet chemical surface treatment involving NH4OH that enables extremely strong direct bonding of two wafer such as semiconductors (e.g., Si) to insulators (e.g., SiO2) at low temperatures (less than or equal to 400° C.). Surface energies as high as ˜4835±675 mJ/m2 of the bonded interface have been achieved using some of these surface treatments. This value is comparable to the values reported for significantly higher processing temperatures (less than 1000° C.). Void free bonding interfaces with excellent yield and surface energies of ˜2500 mJ/m2 have also be achieved herein.
    Type: Application
    Filed: May 28, 2008
    Publication date: September 18, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. Chan, Kathryn Wilder Guarini, Erin C. Jones, Antonio F. Saavedra, Leathen Shi, Dinkar V. Singh
  • Publication number: 20080217782
    Abstract: A method which is intended to facilitate and/or simplify the process of fabricating interlayer vias by selective modification of the FEOL film stack on a transfer wafer is provided. Specifically, the present invention provides a method in which two dimensional devices are prepared for subsequent integration in a third dimension at the transition between normal FEOL processes by using an existing interlayer contact mask to define regions in which layers of undesirable dielectrics and metal are selectively removed and refilled with a middle-of-the-line (MOL) compatible dielectric film. As presented, the inventive method is compatible with standard FEOL/MOL integration schemes, and it guarantees a homogeneous dielectric film stack specifically in areas where interlayer contacts are to be formed, thus allowing the option of a straightforward integration path, if desired.
    Type: Application
    Filed: March 6, 2007
    Publication date: September 11, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David J. Frank, Douglas C. La Tulipe, Leathen Shi, Steven E. Steen, Anna W. Topol
  • Publication number: 20080220588
    Abstract: A semiconductor structure for use as a template for forming high-performance metal oxide semiconductor field effect transistor (MOSFET) devices is provided. More specifically, the present invention provides a structure that includes a SiGe-on-insulator substrate including a tensile-strained SiGe alloy layer located atop an insulating layer; and a strained Si layer atop the tensile-strained SiGe alloy layer. The present invention also provides a method of forming the tensile-strained SGOI substrate as well as the heterostructure described above. The method of the present invention decouples the preference for high strain in the strained Si layer and the Ge content in the underlying layer by providing a tensile-strained SiGe alloy layer directly atop on an insulating layer.
    Type: Application
    Filed: May 22, 2008
    Publication date: September 11, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. Chan, Jack O. Chu, Kern Rim, Leathen Shi