Patents by Inventor Leiming Li

Leiming Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190225867
    Abstract: A system and method for hydraulic fracturing including mixing seawater with an additive to precipitate sulfate from the seawater and mixing a flocculating agent with the seawater to agglomerate the sulfate precipitates.
    Type: Application
    Filed: January 22, 2019
    Publication date: July 25, 2019
    Applicant: Saudi Arabian Oil Company
    Inventors: Leiming Li, Hejian Sun, Feng Liang, Mohammed A. Bataweel
  • Publication number: 20190112519
    Abstract: A method for formulating a hydraulic fracturing fluid composition with increased viscosity and resistance to degradation at increased temperature and pressure. The method includes preparing an alkanolamine borate formulation compatible for mixing with a hydraulic fracturing fluid comprising polysaccharides; preparing the hydraulic fracturing fluid comprising polysaccharides; and mixing the alkanolamine borate formulation with the hydraulic fracturing fluid, such that the alkanolamine borate formulation causes crosslinking of the hydraulic fracturing fluid.
    Type: Application
    Filed: October 16, 2017
    Publication date: April 18, 2019
    Applicant: Saudi Arabian Oil Company
    Inventors: B. Raghava Reddy, Feng Liang, Leiming Li
  • Publication number: 20190093005
    Abstract: A fracturing fluid including a mixture of an aqueous copolymer composition including a copolymer, the copolymer having 2-acrylamido-2-methylpropanesulfonic acid, acrylamide, and acrylic acid monomer units, or a salt thereof, and a crosslinker. The crosslinker includes a metal, and the weight ratio of the metal to the copolymer is in a range of 0.01 to 0.08. Treating a subterranean formation includes introducing the fracturing fluid into a subterranean formation, and crosslinking the fracturing fluid in the subterranean formation to yield a crosslinked fracturing fluid. The crosslinked fracturing fluid has a viscosity of at least 500 cP for at least 80 minutes when the gel is subjected to a shear rate of 40 s?1 at a temperature in a range of 300° F. to 400° F.
    Type: Application
    Filed: November 21, 2018
    Publication date: March 28, 2019
    Applicant: Saudi Arabian Oil Company
    Inventors: Feng Liang, B. Raghava Reddy, Leiming Li, Ghaithan A. Al-Muntasheri
  • Patent number: 10233385
    Abstract: A well servicing fluid includes ingredients including a GLDA salt, a crosslinker, and a viscosifying agent that is not crosslinked by the crosslinker. A well treatment method includes forming a well servicing fluid with ingredients including a GLDA salt, a viscosifying agent, and a crosslinker, the GLDA salt containing a metal cation chelated with a GLDA anion. The well servicing fluid is inserted into a well in a formation. The method includes crosslinking the viscosifying agent and attaining a first viscosity of the well servicing fluid using the crosslinker. After the attaining of the first viscosity, viscosity of the well servicing fluid in the well is decreased to a second viscosity less than the first viscosity by using the GLDA anion. The GLDA salt may be a GLDA calcium salt and the crosslinker may be a zirconium crosslinker.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: March 19, 2019
    Assignee: BJ Services, LLC
    Inventors: Leiming Li, Magnus Legemah, Jia Zhou, Xiaolan Wang, Ahmed Gomaa, Hong Sun
  • Publication number: 20190062619
    Abstract: A fracturing fluid including a mixture of an aqueous terpolymer composition including a terpolymer, an additive, and crosslinker. The terpolymer includes 2-acrylamido-2-methylpropanesulfonic acid, acrylamide, and acrylic acid monomer units, or a salt thereof. The additive includes a sugar alcohol or a derivative thereof, and the crosslinker includes a metal. The weight ratio of the metal to the terpolymer is in a range of 0.01 to 0.16, and a concentration of the additive is in a range of 0.001 wt. % to 10 wt. % of the fracturing fluid. Treating a subterranean formation includes introducing the fracturing fluid into a subterranean formation, and crosslinking the fracturing fluid in the subterranean formation to yield a crosslinked fracturing fluid. The crosslinked fracturing fluid mitigates damage caused by substantial amounts of total dissolved solids or significant water hardness.
    Type: Application
    Filed: August 28, 2018
    Publication date: February 28, 2019
    Applicant: Saudi Arabian Oil Company
    Inventors: Leiming Li, Feng Liang
  • Publication number: 20190040300
    Abstract: A low-corrosivity composition suitable for dissolving scale on metals. The scale includes iron sulfide scale. The composition includes an aqueous hydrogen peroxide solution comprising hydrogen peroxide; and an acidic solution comprising at least one acid, where the hydrogen peroxide and acid are present at concentrations such that the hydrogen peroxide does not break down to form visible bubbles at about room temperature, where the hydrogen peroxide and acid are present at concentrations such that iron sulfide scale is removed from a metal with iron sulfide scale, after the composition contacts the metal and iron sulfide scale at an elevated temperature greater than room temperature, and where the hydrogen peroxide and acid are present at concentrations such that pitting is not caused on the metal, the metal comprising carbon steel.
    Type: Application
    Filed: August 7, 2017
    Publication date: February 7, 2019
    Applicant: Saudi Arabian Oil Company
    Inventors: Hejian Sun, Leiming Li, Feng Liang
  • Publication number: 20190031949
    Abstract: Embodiments of the present disclosure are directed to a method of producing a viscoelastic surfactant (VES) fluid, the VES fluid comprising desulfated seawater. The method of producing the VES fluid comprises adding an alkaline earth metal halide to seawater to produce a sulfate precipitate. The method further comprises removing the sulfate precipitate to produce the desulfated water. The method further comprises adding a VES and one or more of a nanoparticle viscosity modifier or a polymeric modifier to the desulfated seawater. Other embodiments are directed to VES fluids that maintain a viscosity greater than 10 cP at temperatures above 250° F.
    Type: Application
    Filed: July 27, 2017
    Publication date: January 31, 2019
    Applicant: Saudi Arabian Oil Company
    Inventors: Leiming Li, Feng Liang, Tao Chen
  • Publication number: 20190016946
    Abstract: A fracturing fluid including a mixture of an aqueous copolymer composition including a copolymer, the copolymer having 2-acrylamido-2-methylpropanesulfonic acid, acrylamide, and acrylic acid monomer units, or a salt thereof, and a crosslinker. The crosslinker includes a metal, and the weight ratio of the metal to the copolymer is in a range of 0.01 to 0.08. Treating a subterranean formation includes introducing the fracturing fluid into a subterranean formation, and crosslinking the fracturing fluid in the subterranean formation to yield a crosslinked fracturing fluid. The crosslinked fracturing fluid has a viscosity of at least 500 cP for at least 80 minutes when the gel is subjected to a shear rate of 40 s?1 at a temperature in a range of 300° F. to 400° F.
    Type: Application
    Filed: September 18, 2018
    Publication date: January 17, 2019
    Applicant: Saudi Arabian Oil Company
    Inventors: Feng Liang, B. Raghava Reddy, Leiming Li, Ghaithan A. Al-Muntasheri
  • Patent number: 10161223
    Abstract: A method of hydraulically fracturing a subterranean formation penetrated by a wellbore comprises: providing a diverting fluid comprising a carrier fluid, a first superabsorbent polymer and a second superabsorbent polymer, the second superabsorbent polymer having a shape, or a composition, or a combination thereof different from that of the first superabsorbent polymer; injecting the diverting fluid into the subterranean formation; and injecting a fracturing fluid into the formation after injecting the diverting fluid. A viscosity modifying agent can be present in the diverting fluid. Superabsorbent polymers can also be used to develop a temporary filter cake at the formation face to reduce or eliminate the fluid leakoff out of the wellbore.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: December 25, 2018
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Jia Zhou, Harold Dean Brannon, Paul S. Carman, Leiming Li, Thomas Ray Starks, D. V. Satyanarayana Gupta, Harold G. Hudson, Scott G. Nelson
  • Patent number: 10144866
    Abstract: A fracturing fluid including a mixture of an aqueous copolymer composition including a copolymer, the copolymer having 2-acrylamido-2-methylpropanesulfonic acid, acrylamide, and acrylic acid monomer units, or a salt thereof, and a crosslinker. The crosslinker includes a metal, and the weight ratio of the metal to the copolymer is in a range of 0.01 to 0.08. Treating a subterranean formation includes introducing the fracturing fluid into a subterranean formation, and crosslinking the fracturing fluid in the subterranean formation to yield a crosslinked fracturing fluid. The crosslinked fracturing fluid has a viscosity of at least 500 cP for at least 80 minutes when the gel is subjected to a shear rate of 40 s?1 at a temperature in a range of 300° F. to 400° F.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: December 4, 2018
    Assignee: Saudi Arabian Oil Company
    Inventors: Feng Liang, B. Raghava Reddy, Leiming Li, Ghaithan Al-Muntasheri
  • Patent number: 10131833
    Abstract: Self-suspending proppants including proppant particles coated with a CO2-philic coating are provided. The CO2-philic coating may be lightly crosslinked and may have a physical structure that constrains CO2 molecules. Methods of making self-suspending proppants may include coating a proppant particle with a polymerizable precursor material of a CO2-philic material and polymerizing the polymerizable precursor material to form a self-suspending proppant are also provided. Additionally, hydraulic fracturing fluids that may include a CO2-based fluid and the self-suspending proppants and methods of treating subterranean formations by contacting a subterranean formation with hydraulic fracturing fluid and propagating at least one subterranean fracture are provided.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: November 20, 2018
    Assignees: Aramco Services Company, Research Foundation of The City of New York
    Inventors: Feng Liang, Ghaithan A. Al-Muntasheri, Leiming Li, B. Raghava Reddy, George John, Vidyasagar Adiyala
  • Patent number: 10131834
    Abstract: Self-suspending proppants including proppant particles coated with a CO2-philic coating are provided. The CO2-philic coating may be lightly crosslinked and may have a physical structure that constrains CO2 molecules. Methods of making self-suspending proppants may include coating a proppant particle with a polymerizable precursor material of a CO2-philic material and polymerizing the polymerizable precursor material to form a self-suspending proppant are also provided. Additionally, hydraulic fracturing fluids that may include a CO2-based fluid and the self-suspending proppants and methods of treating subterranean formations by contacting a subterranean formation with hydraulic fracturing fluid and propagating at least one subterranean fracture are provided.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: November 20, 2018
    Assignees: Aramco Services Company, Research Foundation of The City University of New York
    Inventors: Feng Liang, Ghaithan A. Al-Muntasheri, Leiming Li, B. Raghava Reddy, George John, Vidyasagar Adiyala
  • Patent number: 10131832
    Abstract: Self-suspending proppants including proppant particles coated with a CO2-philic coating are provided. The CO2-philic coating may be lightly crosslinked and may have a physical structure that constrains CO2 molecules. Methods of making self-suspending proppants may include coating a proppant particle with a polymerizable precursor material of a CO2-philic material and polymerizing the polymerizable precursor material to form a self-suspending proppant are also provided. Additionally, hydraulic fracturing fluids that may include a CO2-based fluid and the self-suspending proppants and methods of treating subterranean formations by contacting a subterranean formation with hydraulic fracturing fluid and propagating at least one subterranean fracture are provided.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: November 20, 2018
    Assignees: Aramco Services Company, Research Foundation of The City University of New York
    Inventors: Feng Liang, Ghaithan A. Al-Muntasheri, Leiming Li, B. Raghava Reddy, George John, Vidyasagar Adiyala
  • Publication number: 20180328147
    Abstract: A method of fracturing a subterranean formation penetrated by a well comprises: forming a fracturing composition comprising a carrier fluid; and a superabsorbent polymer component comprising one or more of the following: a first composite of a proppant and a first superabsorbent polymer in an unhydrated form, the first superabsorbent polymer being at least partially embedded in a void area of the proppant; a coated superabsorbent polymer; a superabsorbent material having a three-dimensional network; or a second composite of a second superabsorbent polymer and a slow-release breaker; and pumping the hydraulic fracturing composition into the subterranean formation to create or enlarge a fracture.
    Type: Application
    Filed: July 24, 2018
    Publication date: November 15, 2018
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: Scott Gregory Nelson, Hong Sun, Jia Zhou, Leiming Li, Xiaolan Wang, Qi Qu
  • Patent number: 10119068
    Abstract: Viscosifying proppants including proppant particles coated with a CO2-philic coating in which the CO2-philic coating has a solvable portion that viscosifies a CO2-based fluid when the viscosifying proppant is added to the CO2-based fluid are provided. Methods of making viscosifying proppants are also provided that include coating proppant particles with a precursor material of a CO2-philic material, and polymerizing the precursor material to form a viscosifying proppant. Viscous hydraulic fracturing fluids include a CO2-based fluid and the viscosifying proppants and methods of treating subterranean formations that include contacting a subterranean formation with a viscous hydraulic fracturing fluid and propagating at least one subterranean fracture are also provided.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: November 6, 2018
    Assignee: Saudi Arabian Oil Company
    Inventors: Feng Liang, Ghaithan A. Al-Muntasheri, Leiming Li, B. Raghava Reddy
  • Patent number: 10113396
    Abstract: A method of fracturing a subterranean formation penetrated by a well comprises: forming a fracturing composition comprising a carrier fluid; and a superabsorbent polymer component comprising one or more of the following: a first composite of a proppant and a first superabsorbent polymer in an unhydrated form, the first superabsorbent polymer being at least partially embedded in a void area of the proppant; a coated superabsorbent polymer; a superabsorbent material having a three-dimensional network; or a second composite of a second superabsorbent polymer and a slow-release breaker; and pumping the hydraulic fracturing composition into the subterranean formation to create or enlarge a fracture.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: October 30, 2018
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Scott Gregory Nelson, Hong Sun, Jia Zhou, Leiming Li, Xiaolan Wang, Qi Qu
  • Patent number: 10106733
    Abstract: Viscosifying proppants including proppant particles coated with a CO2-philic coating in which the CO2-philic coating has a solvable portion that viscosifies a CO2-based fluid when the viscosifying proppant is added to the CO2-based fluid are provided. Methods of making viscosifying proppants are also provided that include coating proppant particles with a precursor material of a CO2-philic material, and polymerizing the precursor material to form a viscosifying proppant. Viscous hydraulic fracturing fluids include a CO2-based fluid and the viscosifying proppants and methods of treating subterranean formations that include contacting a subterranean formation with a viscous hydraulic fracturing fluid and propagating at least one subterranean fracture are also provided.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: October 23, 2018
    Assignee: Saudi Arabian Oil Company
    Inventors: Feng Liang, Ghaithan A. Al-Muntasheri, Leiming Li, B. Raghava Reddy
  • Patent number: 10066155
    Abstract: Viscosifying proppants including proppant particles coated with a CO2-philic coating in which the CO2-philic coating has a solvable portion that viscosifies a CO2-based fluid when the viscosifying proppant is added to the CO2-based fluid are provided. Methods of making viscosifying proppants are also provided that include coating proppant particles with a precursor material of a CO2-philic material, and polymerizing the precursor material to form a viscosifying proppant. Viscous hydraulic fracturing fluids include a CO2-based fluid and the viscosifying proppants and methods of treating subterranean formations that include contacting a subterranean formation with a viscous hydraulic fracturing fluid and propagating at least one subterranean fracture are also provided.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: September 4, 2018
    Assignee: Saudi Arabian Oil Company
    Inventors: Feng Liang, Ghaithan A. Al-Muntasheri, Leiming Li, B. Raghava Reddy
  • Publication number: 20180238154
    Abstract: Techniques for hydraulically fracturing a geologic formation include circulating a proppant-free hydraulic fracturing liquid into a wellbore that is formed from a terranean surface into a geologic formation within a subterranean zone that is adjacent the wellbore; fluidly contacting the geologic formation with the proppant-free hydraulic fracturing liquid for a specified duration of time; and subsequent to the specified duration of time, circulating a hydraulic fracturing liquid that includes proppant into the wellbore to fracture the geologic formation.
    Type: Application
    Filed: February 17, 2017
    Publication date: August 23, 2018
    Inventors: Bitao LAI, Feng LIANG, Leiming LI, Jilin ZHANG
  • Publication number: 20180230368
    Abstract: Viscosifying proppants including proppant particles coated with a CO2-philic coating in which the CO2-philic coating has a solvable portion that viscosifies a CO2-based fluid when the viscosifying proppant is added to the CO2-based fluid are provided. Methods of making viscosifying proppants are also provided that include coating proppant particles with a precursor material of a CO2-philic material, and polymerizing the precursor material to form a viscosifying proppant. Viscous hydraulic fracturing fluids include a CO2-based fluid and the viscosifying proppants and methods of treating subterranean formations that include contacting a subterranean formation with a viscous hydraulic fracturing fluid and propagating at least one subterranean fracture are also provided.
    Type: Application
    Filed: February 6, 2018
    Publication date: August 16, 2018
    Applicant: Saudi Arabian Oil Company
    Inventors: Feng Liang, Ghaithan A. Al-Muntasheri, Leiming Li, B. Raghava Reddy