Patents by Inventor Leiming Li

Leiming Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180230366
    Abstract: Viscosifying proppants including proppant particles coated with a CO2-philic coating in which the CO2-philic coating has a solvable portion that viscosifies a CO2-based fluid when the viscosifying proppant is added to the CO2-based fluid are provided. Methods of making viscosifying proppants are also provided that include coating proppant particles with a precursor material of a CO2-philic material, and polymerizing the precursor material to form a viscosifying proppant. Viscous hydraulic fracturing fluids include a CO2-based fluid and the viscosifying proppants and methods of treating subterranean formations that include contacting a subterranean formation with a viscous hydraulic fracturing fluid and propagating at least one subterranean fracture are also provided.
    Type: Application
    Filed: September 12, 2017
    Publication date: August 16, 2018
    Applicant: Saudi Arabian Oil Company
    Inventors: Feng Liang, Ghaithan A. Al-Muntasheri, Leiming Li, B. Raghava Reddy
  • Publication number: 20180230365
    Abstract: Self-suspending proppants including proppant particles coated with a CO2-philic coating are provided. The CO2-philic coating may be lightly crosslinked and may have a physical structure that constrains CO2 molecules. Methods of making self-suspending proppants may include coating a proppant particle with a polymerizable precursor material of a CO2-philic material and polymerizing the polymerizable precursor material to form a self-suspending proppant are also provided. Additionally, hydraulic fracturing fluids that may include a CO2-based fluid and the self-suspending proppants and methods of treating subterranean formations by contacting a subterranean formation with hydraulic fracturing fluid and propagating at least one subterranean fracture are provided.
    Type: Application
    Filed: September 12, 2017
    Publication date: August 16, 2018
    Applicants: Aramco Services Company, Research Foundation of The City University of New York
    Inventors: Feng Liang, Ghaithan A. Al-Muntasheri, Leiming Li, B. Raghava Reddy, George John, Vidyasagar Adiyala
  • Publication number: 20180230371
    Abstract: Self-suspending proppants including proppant particles coated with a CO2-philic coating are provided. The CO2-philic coating may be lightly crosslinked and may have a physical structure that constrains CO2 molecules. Methods of making self-suspending proppants may include coating a proppant particle with a polymerizable precursor material of a CO2-philic material and polymerizing the polymerizable precursor material to form a self-suspending proppant are also provided. Additionally, hydraulic fracturing fluids that may include a CO2-based fluid and the self-suspending proppants and methods of treating subterranean formations by contacting a subterranean formation with hydraulic fracturing fluid and propagating at least one subterranean fracture are provided.
    Type: Application
    Filed: March 15, 2018
    Publication date: August 16, 2018
    Applicants: Aramco Services Company, Research Foundation of The City University of New York
    Inventors: Feng Liang, Ghaithan A. Al-Muntasheri, Leiming Li, B. Raghava Reddy, George John, Vidyasagar Adiyala
  • Publication number: 20180230369
    Abstract: Viscosifying proppants including proppant particles coated with a CO2-philic coating in which the CO2-philic coating has a solvable portion that viscosifies a CO2-based fluid when the viscosifying proppant is added to the CO2-based fluid are provided. Methods of making viscosifying proppants are also provided that include coating proppant particles with a precursor material of a CO2-philic material, and polymerizing the precursor material to form a viscosifying proppant. Viscous hydraulic fracturing fluids include a CO2-based fluid and the viscosifying proppants and methods of treating subterranean formations that include contacting a subterranean formation with a viscous hydraulic fracturing fluid and propagating at least one subterranean fracture are also provided.
    Type: Application
    Filed: February 6, 2018
    Publication date: August 16, 2018
    Applicant: Saudi Arabian Oil Company
    Inventors: Feng Liang, Ghaithan A. Al-Muntasheri, Leiming Li, B. Raghava Reddy
  • Publication number: 20180230372
    Abstract: Self-suspending proppants including proppant particles coated with a CO2-philic coating are provided. The CO2-philic coating may be lightly crosslinked and may have a physical structure that constrains CO2 molecules. Methods of making self-suspending proppants may include coating a proppant particle with a polymerizable precursor material of a CO2-philic material and polymerizing the polymerizable precursor material to form a self-suspending proppant are also provided. Additionally, hydraulic fracturing fluids that may include a CO2-based fluid and the self-suspending proppants and methods of treating subterranean formations by contacting a subterranean formation with hydraulic fracturing fluid and propagating at least one subterranean fracture are provided.
    Type: Application
    Filed: March 15, 2018
    Publication date: August 16, 2018
    Applicants: Aramco Services Company, Research Foundation of The City University of New York
    Inventors: Feng Liang, Ghaithan A. Al-Muntasheri, Leiming Li, B. Raghava Reddy, George John, Vidyasagar Adiyala
  • Patent number: 10047279
    Abstract: In accordance with one or more embodiments, this disclosure describes a viscoelastic surfactant fluid for a subterranean formation comprising: brine solution; at least one polyacrylamide viscosity modifier with a weight averaged molecular weight (Mw) from 250,000 g/mol to 40,000,000 g/mol; and a viscoelastic surfactant according to formula (I): where R1 is a saturated or unsaturated hydrocarbon group of from 17 to 29 carbon atoms, R2 and R3 are each independently selected from a straight chain or branched alkyl or hydroxyalkyl group of from 1 to 6 carbon atoms; R4 is selected from H, hydroxyl, alkyl or hydroxyalkyl groups of from 1 to 4 carbon atoms; k is an integer of from 2-20; m is an integer of from 1-20; and n is an integer of from 0-20.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: August 14, 2018
    Assignee: Saudi Arabian Oil Company
    Inventors: Leiming Li, Feng Liang, Sehmus Ozden, Ghaithan A. Al-Muntasheri, B. Raghava Reddy
  • Publication number: 20170370197
    Abstract: The subject matter of this specification can be embodied in, among other things, a method for treating a geologic formation that includes providing a hydraulic fracture model, providing a first value representative of a volume of kerogen breaker in a fracturing fluid, determining a discrete fracture network (DFN) based on the hydraulic fracture model and the first value, determining a geomechanical model based on the DFN and a reservoir model based on the DFN, determining a hydrocarbon production volume based on the geomechanical model and the reservoir model, adjusting the first value based on the hydrocarbon production volume, and adjusting a volume of kerogen breaker in the fracturing fluid to a hydrocarbon reservoir based on the adjusted first value.
    Type: Application
    Filed: June 23, 2016
    Publication date: December 28, 2017
    Inventors: Yanhui Han, Leiming Li, Ghaithan Muntasheri, Younane N. Abousleiman, Katherine Leigh Hull, David Jacobi
  • Publication number: 20170355899
    Abstract: Gelled fluids include a gellable organic solvent, an aluminum crosslinking compound, and a mutual solvent. The gelled fluids may be prepared by combining an aluminum crosslinking compound and a first volume of a gellable organic solvent to form a pre-solvation mixture; gelling the pre-solvation mixture to form a pre-solvated gel; combining the pre-solvated gel with a formulation fluid to form a gellable mixture, the formulation fluid comprising a second volume of the gellable organic solvent; and gelling the gellable mixture to form the gelled fluid.
    Type: Application
    Filed: June 8, 2017
    Publication date: December 14, 2017
    Applicant: Saudi Arabian Oil Company
    Inventors: Leiming Li, Ghaithan A. Al-Muntasheri, Feng Liang, Sehmus Ozden
  • Publication number: 20170349815
    Abstract: Gelled hydrocarbon fracturing fluids and their methods of preparation and use are provided. The gelled hydrocarbon fracturing fluid includes a hydrocarbon fluid, a phosphate ester, a crosslinker and a viscosifier. The crosslinker may include iron, aluminum, or combinations thereof and the viscosifier may include clay, graphite, carbon nanotubes, metallic oxide nanoparticles, and combinations thereof. The method of preparation includes combining a hydrocarbon fluid, phosphate ester, and crosslinker to form a baseline fluid. A viscosifier is added to the baseline fluid to form a gelled hydrocarbon fracturing fluid. The method of use includes treating a subterranean formation by contacting a subterranean formation with a gelled hydrocarbon fracturing fluid and generating at least one fracture in the subterranean formation.
    Type: Application
    Filed: May 31, 2017
    Publication date: December 7, 2017
    Inventors: Sehmus Ozden, Leiming Li, Ghaithan A. Al-Muntasheri, Feng Liang
  • Patent number: 9828844
    Abstract: A hydraulic fracturing composition includes: a superabsorbent polymer in an expanded state; a plurality of proppant particles disposed in the superabsorbent polymer; an additive comprising a surfactant, a viscose polymer, or a combination thereof, and a fluid to expand the superabsorbent polymer into the expanded state. A process for disposing a plurality of proppant particles in a fracture comprises: disposing a hydraulic fracturing composition in a downhole environment; forming a fracture; disposing the hydraulic fracturing composition in the fracture; breaking the superabsorbent polymer after forming the fracture; and releasing the plurality of proppant particles from superabsorbent polymer. The process also comprises injecting a proppant-free fluid and a proppant-containing fluid in an alternating order into a subterranean formation.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: November 28, 2017
    Assignee: BAKER HUGHTES, a GE company, LLC
    Inventors: Jia Zhou, Qi Qu, Scott G. Nelson, Hong Sun, Leiming Li
  • Publication number: 20170327722
    Abstract: In accordance with one or more embodiments, this disclosure describes a viscoelastic fluid for a subterranean formation comprising: viscoelastic surfactant comprising the general formula: where R1 is a saturated or unsaturated hydrocarbon group of from 17 to 29 carbon atoms, R2 and R3, are each independently selected from a straight chain or branched alkyl or hydroxyalkyl group of from 1 to 6 carbon atoms; R4 is selected from H, hydroxyl, alkyl or hydroxyalkyl groups of from 1 to 4 carbon atoms; k is an integer of from 2-20; m is an integer of from 1-20; and n is an integer of from 0-20; brine solution; and at least one nanoparticle viscosity modifier comprising a particle size of 0.1 to 500 nanometers, or 0.1 to 100 nanometers.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 16, 2017
    Applicant: Saudi Arabian Oil Company
    Inventors: Leiming Li, Sehmus Ozden, Ghaithan A. Al-Muntasheri, Feng Liang
  • Publication number: 20170327733
    Abstract: In accordance with one or more embodiments, this disclosure describes a viscoelastic surfactant fluid for a subterranean formation comprising: brine solution; at least one polyacrylamide viscosity modifier with a weight averaged molecular weight (Mw) from 250,000 g/mol to 40,000,000 g/mol; and a viscoelastic surfactant according to formula (I): where R1 is a saturated or unsaturated hydrocarbon group of from 17 to 29 carbon atoms, R2 and R3 are each independently selected from a straight chain or branched alkyl or hydroxyalkyl group of from 1 to 6 carbon atoms; R4 is selected from H, hydroxyl, alkyl or hydroxyalkyl groups of from 1 to 4 carbon atoms; k is an integer of from 2-20; m is an integer of from 1-20; and n is an integer of from 0-20.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 16, 2017
    Applicant: Saudi Arabian Oil Company
    Inventors: Leiming Li, Feng Liang, Sehmus Ozden, Ghaithan A. Al-Muntasheri, B. Raghava Reddy
  • Patent number: 9796914
    Abstract: A hydraulic fracturing composition includes: a superabsorbent polymer in an expanded state; a plurality of proppant particles disposed in the superabsorbent polymer; a well treatment agent, and a fluid to expand the superabsorbent polymer into the expanded state. A process for treating a well with well treatment agent includes disposing a hydraulic fracturing composition comprising the well treatment agent in a well. The well treatment agent can be a scale inhibitor, tracer, pH buffering agent, or a combination thereof.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: October 24, 2017
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Dong Shen, Leiming Li, Jia Zhou, Hong Sun
  • Publication number: 20170198207
    Abstract: A fracturing fluid including a base fluid including salt water, a polymer, a crosslinker, and a nanomaterial. The crosslinker may include a Zr crosslinker, a Ti crosslinker, an Al crosslinker, a borate crosslinker, or a combination thereof. The nanomaterial may include ZrO2 nanoparticles, TiO2 nanoparticles, CeO2 nanoparticles; Zr nanoparticles, Ti nanoparticles, Ce nanoparticles, metal-organic polyhedra including Zr, Ti, Ce, or a combination thereof; carbon nanotubes, carbon nanorods, nano graphene, nano graphene oxide; or any combination thereof. The viscosity and viscosity lifetime of fracturing fluids with both crosslinkers and nanomaterials are greater than the sum of the effects of crosslinkers and nanomaterials taken separately.
    Type: Application
    Filed: January 13, 2016
    Publication date: July 13, 2017
    Inventors: Leiming Li, Feng Liang, Ghaithan A. Al-Muntasheri, Amy J. Cairns
  • Publication number: 20170158951
    Abstract: A fracturing fluid including a mixture of an aqueous copolymer composition including a copolymer, the copolymer having 2-acrylamido-2-methylpropanesulfonic acid, acrylamide, and acrylic acid monomer units, or a salt thereof, and a crosslinker. The crosslinker includes a metal, and the weight ratio of the metal to the copolymer is in a range of 0.01 to 0.08. Treating a subterranean formation includes introducing the fracturing fluid into a subterranean formation, and crosslinking the fracturing fluid in the subterranean formation to yield a crosslinked fracturing fluid. The crosslinked fracturing fluid has a viscosity of at least 500 cP for at least 80 minutes when the gel is subjected to a shear rate of 40 s?1 at a temperature in a range of 300° F. to 400° F.
    Type: Application
    Filed: December 1, 2016
    Publication date: June 8, 2017
    Inventors: Feng Liang, B. Raghava Reddy, Leiming Li, Ghaithan Al-Muntasheri
  • Publication number: 20170037302
    Abstract: Embodiments for a high temperature fracturing fluid comprise an aqueous fluid, carboxyl-containing synthetic polymer, metal oxide nanoparticles having a particle size of 0.1 to 500 nanometers, and a metal crosslinker which crosslinks the carboxyl-containing synthetic polymers to form a crosslinked gel, wherein the metal oxide nanoparticles are dispersed within the crosslinked gel.
    Type: Application
    Filed: May 18, 2016
    Publication date: February 9, 2017
    Applicant: Saudi Arabian Oil Company
    Inventors: Feng Liang, Ghaithan Al-Muntasheri, Leiming Li
  • Publication number: 20160376881
    Abstract: A well servicing fluid includes ingredients including a GLDA salt, a crosslinker, and a viscosifying agent that is not crosslinked by the crosslinker. A well treatment method includes forming a well servicing fluid with ingredients including a GLDA salt, a viscosifying agent, and a crosslinker, the GLDA salt containing a metal cation chelated with a GLDA anion. The well servicing fluid is inserted into a well in a formation. The method includes crosslinking the viscosifying agent and attaining a first viscosity of the well servicing fluid using the crosslinker. After the attaining of the first viscosity, viscosity of the well servicing fluid in the well is decreased to a second viscosity less than the first viscosity by using the GLDA anion. The GLDA salt may be a GLDA calcium salt and the crosslinker may be a zirconium crosslinker.
    Type: Application
    Filed: June 29, 2015
    Publication date: December 29, 2016
    Inventors: Leiming Li, Magnus Legemah, Jia Zhou, Xiaolan Wang, Ahmed Gomaa, Hong Sun
  • Publication number: 20160347985
    Abstract: A fluid for temporarily plugging a hydrocarbon-bearing formation is disclosed. The fluid includes a carrier fluid and a crosslinked synthetic polymer, wherein the polymer comprises a labile group to degrade the polymer when exposed to a change in a condition of the fluid.
    Type: Application
    Filed: May 13, 2016
    Publication date: December 1, 2016
    Applicant: Baker Hughes Incorporated
    Inventors: Leiming Li, Jia Zhou, Hong Sun, Harold D. Brannon, Magnus Legemah
  • Publication number: 20160289541
    Abstract: A method of hydraulically fracturing a subterranean formation penetrated by a wellbore comprises: providing a diverting fluid comprising a carrier fluid, a first superabsorbent polymer and a second superabsorbent polymer, the second superabsorbent polymer having a shape, or a composition, or a combination thereof different from that of the first superabsorbent polymer; injecting the diverting fluid into the subterranean formation; and injecting a fracturing fluid into the formation after injecting the diverting fluid. A viscosity modifying agent can be present in the diverting fluid. Superabsorbent polymers can also be used to develop a temporary filter cake at the formation face to reduce or eliminate the fluid leakoff out of the wellbore.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 6, 2016
    Applicant: Baker Hughes Incorporated
    Inventors: Jia Zhou, Harold Dean Brannon, Paul S. Carman, Leiming Li, Thomas Ray Starks, II, D.V. Satyanarayana Gupta, Harold G. Hudson, Scott G. Nelson
  • Publication number: 20160289542
    Abstract: A method of fracturing a subterranean formation penetrated by a well comprises: forming a fracturing composition comprising a carrier fluid; and a superabsorbent polymer component comprising one or more of the following: a first composite of a proppant and a first superabsorbent polymer in an unhydrated form, the first superabsorbent polymer being at least partially embedded in a void area of the proppant; a coated superabsorbent polymer; a superabsorbent material having a three-dimensional network; or a second composite of a second superabsorbent polymer and a slow-release breaker; and pumping the hydraulic fracturing composition into the subterranean formation to create or enlarge a fracture.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 6, 2016
    Applicant: Baker Hughes Incorporated
    Inventors: Scott Gregory Nelson, Jia Zhou, Leiming Li