Patents by Inventor Leonard Forbes

Leonard Forbes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7754618
    Abstract: A dielectric layer including cerium oxide and aluminum oxide acting as a single dielectric layer, and a method of fabricating such a dielectric layer, produces a reliable structure with a high dielectric constant (high-k) for use in a variety of electronic devices. Such a dielectric layer including cerium oxide and aluminum oxide may be used as the gate insulator of a MOSFET, as a capacitor dielectric in a DRAM, as a tunnel gate insulator in flash memory, or as a dielectric in an NROM device, among others, because the high dielectric constant (high-k) of the film provides the functionality of a much thinner silicon dioxide film.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: July 13, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20100173460
    Abstract: A memory device, system and fabrication method relating to a vertical memory cell including a semiconducting pillar extending outwardly from an integrally connected semiconductor substrate are disclosed. A first source/drain region is formed in the substrate and a body region and a second source/drain region are formed within the pillar. A first gate is coupled to a first side of the pillar for coupling the first and second source/drain regions together when activated. The vertical memory cell also includes a storage capacitor formed on an extended end of the semiconducting pillar and electrically coupled to the second source/drain region.
    Type: Application
    Filed: March 16, 2010
    Publication date: July 8, 2010
    Applicant: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7750344
    Abstract: Doped aluminum oxide layers having a porous aluminum oxide layer and methods of their fabrication. The porous aluminum oxide layer may be formed by evaporation physical vapor deposition techniques to facilitate formation of a high-purity aluminum oxide layer. A dopant material is embedded in the pores of the porous aluminum oxide layer and subsequently converted to a dielectric form. The degree of porosity of the porous aluminum oxide layer may be controlled during formation to facilitate control of the level of doping of the doped aluminum oxide layer. Such doped aluminum oxide layers are useful as gate dielectric layers, intergate dielectric layers and capacitor dielectric layers in various integrated circuit devices.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: July 6, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kie Ahn, Leonard Forbes
  • Patent number: 7750379
    Abstract: One aspect of this disclosure relates to an integrated circuit structure. An integrated circuit structure embodiment includes a substrate, a gate dielectric over the substrate, a carbon structure having a predetermined thickness in contact with and over the gate dielectric, and a layer of desired gate material for a transistor in contact with and over the carbon structure. The layer of desired gate material includes a predetermined thickness corresponding to the predetermined thickness of the carbon structure to support a metal substitution process to replace the carbon structure with the desired gate material. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: July 6, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Paul A. Farrar, Kie Y. Ahn
  • Patent number: 7749879
    Abstract: The use of atomic layer deposition (ALD) to form a semiconductor structure of a silicon film on a germanium substrate is disclosed. An embodiment includes a tantalum nitride gate electrode on a hafnium dioxide gate dielectric on the silicon film (TaN/HfO2/Si/Ge), which produces a reliable high dielectric constant (high k) electronic structure having higher charge carrier mobility as compared to silicon substrates. This structure may be useful in high performance electronic devices. The structure is formed by ALD deposition of a thin silicon layer on a germanium substrate surface, and then ALD forming a hafnium oxide gate dielectric layer, and a tantalum nitride gate electrode. Such a structure may be used as the gate of a MOSFET, or as a capacitor. The properties of the dielectric may be varied by replacing the hafnium oxide with another gate dielectric such as zirconium oxide (ZrO2), or titanium oxide (TiO2).
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: July 6, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7750389
    Abstract: An array of memory cells configured to store at least one bit per one F2 includes substantially vertical structures providing an electronic memory function spaced apart a distance equal to one half of a minimum pitch of the array. The structures providing the electronic memory function are configured to store more than one bit per gate. The array also includes electrical contacts to the memory cells including the substantially vertical structures. The cells can be programmed to have one of a number of charge levels trapped in the gate insulator adjacent to the first source/drain region such that the channel region has a first voltage threshold region (Vt1) and a second voltage threshold region (Vt2) and such that the programmed cell operates at reduced drain source current.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: July 6, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kirk D. Prall, Leonard Forbes
  • Patent number: 7745873
    Abstract: A vertical tunneling, ultra-thin body transistor is formed on a substrate out of a vertical oxide pillar having active regions of opposing conductivity on opposite ends of the pillar. In one embodiment, the source region is a p+ region in the substrate under the pillar and the drain region is an n+ region at the top of the pillar. A gate structure is formed along the pillar sidewalls and over the body layers. The transistor operates by electron tunneling from the source valence band to the gate bias-induced n-type channels, along the ultra-thin silicon bodies, thus resulting in a drain current.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: June 29, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7737536
    Abstract: Structures, in various embodiments, are provided using capacitive techniques to reduce noise in high speed interconnections, such as in CMOS integrated circuits. In an embodiment, a transmission line is disposed on a first layer of insulating material, where the first layer of insulating has a thickness equal to or less than 1.0 micrometer. The transmission line may be structured with a thickness and a width of approximately 1.0 micrometers. A second layer of insulating material is disposed on the transmission line.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: June 15, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7728626
    Abstract: Structures, systems and methods for transistors utilizing oxide nanolaminates are provided. One transistor embodiment includes a first source/drain region, a second source/drain region, and a channel region therebetween. A gate is separated from the channel region by a gate insulator. The gate insulator includes oxide insulator nanolaminate layers with charge trapping in potential wells formed by different electron affinities of the insulator nanolaminate layers.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: June 1, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Patent number: 7727908
    Abstract: Atomic layer deposition (ALD) can be used to form a dielectric layer of zirconium aluminum oxynitride (ZrAlON) for use in a variety of electronic devices. Forming the dielectric layer may include depositing zirconium oxide using atomic layer deposition and precursor chemicals, followed by depositing aluminum nitride using precursor chemicals, and repeating. The dielectric layer may be used as the gate insulator of a MOSFET, a capacitor dielectric, and a tunnel gate insulator in flash memories.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: June 1, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7727905
    Abstract: Dielectric layers containing a zirconium-doped tantalum oxide layer, where the zirconium-doped tantalum oxide layer is arranged as a structure of one or more monolayers of tantalum oxide doped with zirconium, provide an insulating layer in a variety of structures for use in a wide range of electronic devices.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: June 1, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7727910
    Abstract: Methods of forming transparent conducting oxides and devices formed by these methods are shown. Monolayers that contain zinc and monolayers that contain zirconium are deposited onto a substrate and subsequently processed to form zirconium-doped zinc oxide. The resulting transparent conducing oxide includes properties such as an amorphous or nanocrystalline microstructure. Devices that include transparent conducing oxides formed with these methods have better step coverage over substrate topography and more robust film mechanical properties.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: June 1, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7728607
    Abstract: Methods, devices, and systems for probing electrical circuits without loading the circuits are described herein. One embodiment of an electrical probe includes a coaxial cable having an inner conductor and an outer conductor, an extension portion of the inner conductor extending beyond the outer conductor at a probe end of the cable. The electrical probe includes a conductive whisker having a first portion separated from and extending a distance along the extension portion such that the first portion and the extension portion form a first capacitor and a second portion having a probe tip for receiving an input test signal from a circuit node under test.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: June 1, 2010
    Inventor: Leonard Forbes
  • Patent number: 7729189
    Abstract: A switched capacitor sense amplifier includes capacitively coupled input, feedback, and reset paths to provide immunity to the mismatches in transistor characteristics and offsets. The sense amplifier includes a cross-coupled pair of inverters with capacitors absorbing offset voltages developed as effects of the mismatches. When used in a dynamic random access memory (DRAM) device, this immunity to the mismatches and offsets allows the sense amplifier to reliably detect and refresh small signals.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: June 1, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7719065
    Abstract: A ruthenium layer for a dielectric layer containing a lanthanide layer and a method of fabricating such a combination of ruthenium layer and dielectric layer produce a reliable structure for use in a variety of electronic devices. A ruthenium or a conductive ruthenium oxide layer may be formed on the lanthanide oxide dielectric layer.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: May 18, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7719046
    Abstract: The present invention includes floating gate transistor structures used in non-volatile memory devices such as flash memory devices. In one embodiment, a system includes a CPU and a memory device including an array having memory cells having columnar structures and a floating gate structure interposed between the structures that is positioned closer to one of the structures. In another embodiment, a memory device includes an array having memory cells having adjacent FETs having source/drain regions and a common floating gate structure that is spaced apart from the source/drain region of one FET by a first distance, and spaced apart from the source/drain region of the opposing FET by a second distance. In still another embodiment, a memory device is formed by positioning columnar structures on a substrate, and interposing a floating gate between the structures that is closer to one of the structures.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: May 18, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7709402
    Abstract: Electronic apparatus and methods of forming the electronic apparatus include a HfSiON film on a substrate for use in a variety of electronic systems. The HfSiON film may be structured as one or more monolayers. The HfSiON film may be formed by atomic layer deposition. Electrodes to a dielectric containing a HfSiON may be structured as one or more monolayers of titanium nitride, tantalum, or combinations of titanium nitride and tantalum. The titanium nitride and the tantalum may be formed by atomic layer deposition.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: May 4, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7705677
    Abstract: The frequency and transient responses of a CMOS differential amplifier are improved by employing one or more compensating capacitors. A compensating capacitor coupled to a differential input of the CMOS differential amplifier is used to inject current into the differential input, such that the net current flow through the gate-to-drain capacitance of a MOS input transistor approaches zero. Thus, the Miller effect with respect to that MOS input transistor is substantially reduced or eliminated, resulting in increased frequency and transient responses for the CMOS differential amplifier. In one embodiment, the CMOS differential amplifier is a CMOS current mirror differential amplifier.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: April 27, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, David R. Cuthbert
  • Publication number: 20100096718
    Abstract: A backside illuminated image sensor includes a substrate, a backside passivation layer disposed on backside of the substrate, and a transparent conductive layer disposed on the backside passivation layer.
    Type: Application
    Filed: October 21, 2008
    Publication date: April 22, 2010
    Inventors: Jaroslav HYNECEK, Leonard Forbes, Homayoon Haddad, Thomas Joy
  • Patent number: 7700989
    Abstract: Embodiments of a dielectric layer containing a hafnium titanium oxide film structured as one or more monolayers include the dielectric layer disposed in an integrated circuit. Embodiments of methods of fabricating such a dielectric layer provide a dielectric layer for use in a variety of electronic devices.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: April 20, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes