Patents by Inventor Leonard Forbes

Leonard Forbes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7927996
    Abstract: Methods of forming transparent conducting oxides and devices formed by these methods are shown. Monolayers that contain tungsten and monolayers that contain indium are deposited onto a substrate and subsequently processed to form tungsten-doped indium oxide. The resulting transparent conducing oxide includes properties such as an amorphous or nanocrystalline microstructure. Devices that include transparent conducing oxides formed with these methods have better step coverage over substrate topography and more robust film mechanical properties.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: April 19, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7924040
    Abstract: Methods, devices, and systems for probing electrical circuits without loading the circuits are described herein. One embodiment of an electrical probe includes a coaxial cable having an inner conductor and an outer conductor, an extension portion of the inner conductor extending beyond the outer conductor at a probe end of the cable. The electrical probe includes a conductive whisker having a first portion separated from and extending a distance along the extension portion such that the first portion and the extension portion form a first capacitor and a second portion having a probe tip for receiving an input test signal from a circuit node under test.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: April 12, 2011
    Inventor: Leonard Forbes
  • Patent number: 7923381
    Abstract: A dielectric film containing Zr—Sn—Ti—O and methods of fabricating such a dielectric film produce a reliable dielectric layer having an equivalent oxide thickness thinner than attainable using SiO2. Films of Zr—Sn—Ti—O may be formed in a self-limiting growth process.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: April 12, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7915174
    Abstract: Dielectric layers containing a dielectric layer including lanthanum and hafnium and methods of fabricating such dielectric layers provide an insulating layer in a variety of structures for use in a wide range of electronic devices.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: March 29, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7915669
    Abstract: An NROM flash memory cell is implemented in an ultra-thin silicon-on-insulator structure. In a planar device, the channel between the source/drain areas is normally fully depleted. An oxide layer provides an insulation layer between the source/drain areas and the gate insulator layer on top. A control gate is formed on top of the gate insulator layer. In a vertical device, an oxide pillar extends from the substrate with a source/drain area on either side of the pillar side. Epitaxial regrowth is used to form ultra-thin silicon body regions along the sidewalls of the oxide pillar. Second source/drain areas are formed on top of this structure. The gate insulator and control gate are formed on top.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: March 29, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7915712
    Abstract: A method of passivating germanium that comprises providing a germanium material and carburizing the germanium material to form a germanium carbide material. The germanium carbide material may be formed by microwave plasma-enhanced chemical vapor deposition by exposing the germanium material to a microwave-generated plasma that is formed from a carbon-containing source gas and hydrogen. The source gas may be a carbon-containing gas selected from the group consisting of ethylene, acetylene, ethanol, a hydrocarbon gas having from one to ten carbon atoms per molecule, and mixtures thereof. The resulting germanium carbide material may be amorphous and hydrogenated. The germanium material may be carburized without forming a distinct boundary at an interface between the germanium material and the germanium carbide material. An intermediate semiconductor device structure and a semiconductor device structure, each of which comprises the germanium carbide material, are also disclosed.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: March 29, 2011
    Assignee: Round Rock Research, LLC
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Publication number: 20110070717
    Abstract: Methods of forming and the resulting capacitors formed by these methods are shown. Monolayers that contain praseodymium are deposited onto a substrate and subsequently processed to form praseodymium oxide dielectrics. Monolayers that contain titanium or other metals are deposited onto a substrate and subsequently processed to form metal electrodes. Resulting capacitor structures includes properties such as improved dimensional control. One improved dimensional control includes thickness. Some resulting capacitor structures also include properties such as an amorphous or nanocrystalline microstructure. Selected components of capacitors formed with these methods have better step coverage over substrate topography and more robust film mechanical properties.
    Type: Application
    Filed: November 15, 2010
    Publication date: March 24, 2011
    Inventors: Kie Y. Ahn, Leonard Forbes, Arup Bhattacharyya
  • Patent number: 7910972
    Abstract: A memory array with data/bit lines extending generally in a first direction formed in an upper surface of a substrate and access transistors extending generally upward and aligned generally atop a corresponding data/bit line. The access transistors have a pillar extending generally upward with a source region formed so as to be in electrical communication with the corresponding data/bit line and a drain region formed generally at an upper portion of the pillar and a surround gate structure substantially completely encompassing the pillar in lateral directions and extending substantially the entire vertical extent of the pillar and word lines extending generally in a second direction and in electrical contact with a corresponding surround gate structure at least a first surface thereof such that bias voltage applied to a given word line is communicated substantially uniformly in a laterally symmetric extent about the corresponding pillar via the surround gate structure.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: March 22, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7902582
    Abstract: Electronic apparatus and methods of forming the electronic apparatus include a tantalum lanthanide oxynitride film on a substrate for use in a variety of electronic systems. The tantalum lanthanide oxynitride film may be structured as one or more monolayers. Metal electrodes may be disposed on a dielectric containing a tantalum lanthanide oxynitride film.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: March 8, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn, Arup Bhattacharyya
  • Patent number: 7892921
    Abstract: A graded composition, high dielectric constant gate insulator is formed between a substrate and floating gate in a flash memory cell transistor. The gate insulator is comprised of amorphous germanium or a graded composition of germanium carbide and silicon carbide. If the composition of the gate insulator is closer to silicon carbide near the substrate, the electron barrier for hot electron injection will be lower. If the gate insulator is closer to the silicon carbide near the floating gate, the tunnel barrier can be lower at the floating gate.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: February 22, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Publication number: 20110037500
    Abstract: An integrated circuit comparator comprises a differential amplifier, a source follower circuit coupled to a gate terminal of a first transistor in the differential amplifier, and an output circuit. One or more source follower circuits may be utilized in connection with the differential amplifier, and one or more source follower circuits may be utilized in connection with the output circuit.
    Type: Application
    Filed: October 20, 2010
    Publication date: February 17, 2011
    Inventor: Leonard Forbes
  • Publication number: 20110037117
    Abstract: Lanthanum-metal oxide dielectrics and methods of fabricating such dielectrics provide an insulating layer in a variety of structures for use in a wide range of electronic devices and systems. In an embodiment, a lanthanum-metal oxide dielectric is formed using a trisethylcyclopentadionatolanthanum precursor and/or a trisdipyvaloylmethanatolanthanum precursor. Additional apparatus, systems, and methods are disclosed.
    Type: Application
    Filed: October 29, 2010
    Publication date: February 17, 2011
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7888721
    Abstract: A vertical transistor having an annular transistor body surrounding a vertical pillar, which can be made from oxide. The transistor body can be grown by a solid phase epitaxial growth process to avoid difficulties with forming sub-lithographic structures via etching processes. The body has ultra-thin dimensions and provides controlled short channel effects with reduced need for high doping levels. Buried data/bit lines are formed in an upper surface of a substrate from which the transistors extend. The transistor can be formed asymmetrically or offset with respect to the data/bit lines. The offset provides laterally asymmetric source regions of the transistors. Continuous conductive paths are provided in the data/bit lines which extend adjacent the source regions to provide better conductive characteristics of the data/bit lines, particularly for aggressively scaled processes.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: February 15, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7888744
    Abstract: In various method embodiments, a device region is defined in a semiconductor substrate and isolation regions are defined adjacent to the device region. The device region has a channel region, and the isolation regions have volumes. The volumes of the isolation regions are adjusted to provide the channel region with a desired strain. In various embodiments, adjusting the volumes of the isolation regions includes transforming the isolation regions from a crystalline region to an amorphous region to expand the volumes of the isolation regions and provide the channel region with a desired compressive strain. In various embodiments, adjusting the volumes of the isolation regions includes transforming the isolation regions from an amorphous region to a crystalline region to contract the volumes of the isolation regions to provide the channel region with a desired tensile strain. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: February 15, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Paul A. Farrar
  • Patent number: 7888261
    Abstract: A method for forming conductive contacts and interconnects in a semiconductor structure, and the resulting conductive components are provided. In particular, the method is used to fabricate single or dual damascene copper contacts and interconnects in integrated circuits such as memory devices and microprocessor.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: February 15, 2011
    Assignee: Mosaid Technologies, Incorporated
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7879674
    Abstract: The use of a germanium carbide (GeC), or a germanium silicon carbide (GeSiC) layer as a floating gate material to replace heavily doped polysilicon (poly) in fabricating floating gates in EEPROM and flash memory results in increased tunneling currents and faster erase operations. Forming the floating gate includes depositing germanium-silicon-carbide in various combinations to obtain the desired tunneling current values at the operating voltage of the memory device.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: February 1, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Publication number: 20110018045
    Abstract: The invention includes a method of forming a semiconductor construction. Dopant is implanted into the upper surface of a monocrystalline silicon substrate. The substrate is etched to form a plurality of trenches and cross-trenches which define a plurality of pillars. After the etching, dopant is implanted within the trenches to form a source/drain region that extends less than an entirety of the trench width. The invention includes a semiconductor construction having a bit line disposed within a semiconductor substrate below a first elevation. A wordline extends elevationally upward from the first elevation and substantially orthogonal relative to the bit line. A vertical transistor structure is associated with the wordline. The transistor structure has a channel region laterally surrounded by a gate layer and is horizontally offset relative to the bit line.
    Type: Application
    Filed: October 6, 2010
    Publication date: January 27, 2011
    Applicant: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7875948
    Abstract: A backside illuminated image sensor includes a substrate, a backside passivation layer disposed on backside of the substrate, and a transparent conductive layer disposed on the backside passivation layer.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: January 25, 2011
    Inventors: Jaroslav Hynecek, Leonard Forbes, Homayoon Haddad, Thomas Joy
  • Patent number: 7875529
    Abstract: Methods, devices, modules, and systems providing semiconductor devices in a stacked wafer system are described herein. One embodiment includes a first wafer for NMOS transistors in a CMOS architecture and a second wafer for PMOS transistors in the CMOS architecture, with the first wafer being bonded and electrically coupled to the second wafer to form at least one CMOS device. Another embodiment includes a number of DRAM capacitors formed on a first wafer and support circuitry associated with the DRAM capacitors formed on a second wafer, with the first wafer being bonded and electrically coupled to the second wafer to form a number of DRAM cells. Another embodiment includes a first wafer having a number of vertical transistors coupled to a data line and a second wafer having amplifier circuitry associated with the number of vertical transistors, with the first wafer being bonded and electrically coupled to the second wafer.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: January 25, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Paul A. Farrar, Arup Bhattacharyya, Hussein I. Hanafi, Warren M. Farnworth
  • Patent number: 7875912
    Abstract: The use of atomic layer deposition (ALD) to form a nanolaminate dielectric of zirconium oxide (ZrO2), hafnium oxide (HfO2) and tin oxide (SnO2) acting as a single dielectric layer with a formula of Zrx Hfy Sn1-x-y O2, and a method of fabricating such a dielectric layer is described that produces a reliable structure with a high dielectric constant (high k). The dielectric structure is formed by depositing zirconium oxide by atomic layer deposition onto a substrate surface using precursor chemicals, followed by depositing hafnium oxide onto the substrate using precursor chemicals, followed by depositing tin oxide onto the substrate using precursor chemicals, and repeating to form the thin laminate structure. Such a dielectric may be used as a gate insulator, a capacitor dielectric, or as a tunnel insulator in non-volatile memories, because the high dielectric constant (high k) provides the functionality of a much thinner silicon dioxide film.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: January 25, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes