Patents by Inventor Leonid M Litvak

Leonid M Litvak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230302276
    Abstract: A medical system for obstructive sleep apnea (OSA) treatment includes therapy delivery circuitry configured to output one or more electrical stimulation signals to a tongue of a patient; sensing circuitry configured to sense one or more compound muscle action potential (CMAP) signals, wherein the one or more CMAP signals are generated in response to the delivery of the one or more electrical stimulation signals; and processing circuitry configured to: cause the therapy delivery circuitry to output the one or more electrical stimulation signals to the tongue; receive information indicative of the one or more CMAP signals from the sensing circuitry; determine, based on the one or more CMAP signals, one or more therapeutic stimulation parameters for the OSA treatment; and cause the therapy delivery circuitry to deliver therapeutic electrical stimulation signals according to at least the determined one or more therapeutic stimulation parameters.
    Type: Application
    Filed: March 25, 2022
    Publication date: September 28, 2023
    Inventors: Leonid M. Litvak, Avram Scheiner, Kristin N. Hageman, Kanthaiah Koka, James Britton Hissong, Erik J. Peterson, David J. Miller, Robert T. Sandgren, Adam J. Rivard, Sean P. Skubitz, Thomas I. Miller
  • Publication number: 20230256251
    Abstract: An implantable tibial nerve electrical stimulation therapy device, system and method configured to detect unintentional and intentional body signals to control and modify the electrical stimulation therapy, thereby enabling selective pausing of electrical stimulation therapy and increase/decrease in amplitude or frequency of the electrical stimulation therapy for improved safety, comfort and effective therapy.
    Type: Application
    Filed: February 2, 2023
    Publication date: August 17, 2023
    Inventors: Sarah J. OFFUTT, Leonid M. LITVAK, Maneesh SHRIVASTAV
  • Publication number: 20230241395
    Abstract: A system includes telemetry circuitry configured for communication between a medical device and an external device associated with the medical device and processing circuitry. The processing circuitry is configured to receive an indication of a plurality of user inputs, each user input of the plurality of user inputs indicating a respective value of a plurality of values for a stimulation parameter that at least partially defines therapy provided to the patient in a posture state of a plurality of posture states. The processing circuitry is further configured to determine a representative value for the stimulation parameter based on the plurality of values for the stimulation parameter that at least partially defines therapy provided to the patient in the posture state. The processing circuitry is further configured to control the medical device to provide the therapy according to the representative value.
    Type: Application
    Filed: December 14, 2022
    Publication date: August 3, 2023
    Inventors: Todd D. Zenisek, Juan G. Hincapie, Andrew J. Cleland, Leonid M. Litvak, Andrew L. Schmeling
  • Publication number: 20230233857
    Abstract: An illustrative scalar translocation detection system directs a loudspeaker to apply acoustic stimulation to a cochlear implant patient while an electrode lead is inserted into a cochlea of the cochlear implant patient. The system detects a first evoked response to the acoustic stimulation while an electrode is positioned at a first location in the cochlea and detects a second evoked response to the acoustic stimulation while the electrode is positioned at a second location in the cochlea. Then, based on at least one of an amplitude change or a phase change between the first and second evoked responses, the system determines that a scalar translocation of the electrode lead from one scala of the cochlea to another scala of the cochlea has occurred. Based on this determination, the system also notifies a user that the scalar translocation has occurred. Corresponding methods and systems are also disclosed.
    Type: Application
    Filed: March 31, 2023
    Publication date: July 27, 2023
    Inventors: Kanthaiah Koka, Leonid M. Litvak
  • Publication number: 20230173271
    Abstract: An exemplary system includes an implantable stimulator configured to be implanted within a recipient and apply electrical stimulation configured to treat tinnitus within the recipient. The system further includes an implantable sensor configured to be implanted within the recipient and output first sensor data representative of a first property associated with the recipient. The system further includes an external sensor configured to be external to the recipient and output second sensor data representative of a second property associated with the recipient. The system further includes a controller communicatively coupled to the implant, the implantable sensor, and the external sensor. The controller is configured to receive the first and second sensor data, and control, based on the first and second sensor data, the electrical stimulation.
    Type: Application
    Filed: May 21, 2021
    Publication date: June 8, 2023
    Inventors: Leonid M. Litvak, Stefan Launer, Elizabeth Galster, Hannah A. Glick
  • Publication number: 20230166111
    Abstract: A system includes memory and processing circuitry coupled to the memory and configured to determine a plurality of local field potential (LFP) measurements of an LFP, wherein the LFP is intrinsically generated by a signal source within a brain of a patient, determine one or more electrodes for delivering a therapeutic electrical stimulation signal based on the LFP measurements, control stimulation generation circuitry to deliver a plurality of electrical stimulation signals via the determined one or more electrodes, wherein the plurality of electrical stimulation signals each comprise at least one different therapy parameter, for respective ones of the plurality of electrical stimulation signals, determine respective evoked signals, wherein the respective evoked signals are evoked by delivery of the respective plurality of electrical stimulation signals, and determine at least one parameter for the therapeutic electrical stimulation signal based on the respective evoked signals.
    Type: Application
    Filed: October 31, 2022
    Publication date: June 1, 2023
    Inventors: Kristin N. Hageman, Scott R. Stanslaski, Erik J. Peterson, Rene A. Molina, Paul H. Stypulkowski, David A. Dinsmoor, Leonid M. Litvak, Michelle A. Case
  • Patent number: 11642525
    Abstract: An exemplary scalar translocation detection system detects a first evoked response occurring in response to acoustic stimulation applied to a cochlear implant patient. The system detects the first evoked response by way of an electrode configuration disposed on an electrode lead while the electrode configuration is positioned at a first location along an insertion path of the electrode lead into a cochlea of the patient. The system further detects, by way of the electrode configuration while it is positioned at a second location along the insertion path, a second evoked response occurring in response to additional acoustic stimulation applied to the patient. The system further determines an amplitude change and/or a phase change between the first and second evoked responses, and then determines whether a scalar translocation of the electrode lead from one scala of the cochlea to another has occurred based on the amplitude change and/or the phase change.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: May 9, 2023
    Assignee: Advanced Bionics AG
    Inventors: Kanthaiah Koka, Leonid M. Litvak
  • Patent number: 11642535
    Abstract: A cochlear implant system may include a cochlear implant configured to be implanted within a user and a sound processor configured to detect an amount of sound exposure to the user; gradually adjust a most comfortable level (“M level”) from an initial value towards a target value in accordance with an adaption time course and in accordance with the detected amount of sound exposure to the user by increasing the M level when the detected amount of sound exposure is above a first threshold and decreasing the M level when the detected amount of sound exposure is below a second threshold; and direct the cochlear implant to apply stimulation having the gradually adjusted M level to the user.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: May 9, 2023
    Assignee: Advanced Bionics AG
    Inventors: Abhijit Kulkarni, Leonid M. Litvak
  • Publication number: 20230108415
    Abstract: An illustrative system includes a coil configured to be positioned over a wound on a body and held in place on the body by a magnet implanted within the body; and a controller communicatively coupled to the coil, the controller configured to apply therapeutic electromagnetic pulses by way of the coil to the wound. Other systems and methods for providing therapeutic electromagnetic pulses to a recipient are also disclosed.
    Type: Application
    Filed: December 5, 2022
    Publication date: April 6, 2023
    Inventors: Leonid M. Litvak, R. Tissa Karunasiri, Kanthaiah Koka, Smita S. Agrawal
  • Publication number: 20230062062
    Abstract: An example system includes a memory; and processing circuitry configured to: cause an implantable stimulation device to deliver a plurality of doses of electrical stimulation to a patient; receive, for each respective dose of the plurality of doses, a respective electrical signal of a plurality of electrical signals; and determine, based on a variation of the plurality of electrical signals, whether the plurality of doses of electrical stimulation evoked neural potentials in the patient.
    Type: Application
    Filed: August 15, 2022
    Publication date: March 2, 2023
    Inventors: Leonid M. Litvak, Scott R. Stanslaski, Erik J. Peterson
  • Patent number: 11554268
    Abstract: An exemplary system includes a coil configured to be positioned over a wound on a body and held in place on the body by a magnet implanted within the body. The system further includes a controller communicatively coupled to the coil and configured to apply therapeutic electromagnetic pulses by way of the coil to the wound. Other systems and methods for providing therapeutic electromagnetic pulses to a recipient are also disclosed.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: January 17, 2023
    Assignee: Advanced Bionics AG
    Inventors: Leonid M. Litvak, R. Tissa Karunasiri, Kanthaiah Koka, Smita S. Agrawal
  • Publication number: 20220355100
    Abstract: An illustrative electrode locating system directs a first electrode on an electrode lead to generate an electrical pulse after being inserted into a cochlea of a patient during an insertion procedure to insert the electrode lead into the cochlea. The electrode locating system then directs a voltage to be detected between a second electrode of the electrode lead that has not yet been inserted into the cochlea and a ground contact that is to remain external to the cochlea after the insertion procedure. Based on the voltage detected between the second electrode and the ground contact, the electrode locating system determines that the second electrode has not yet been inserted into the cochlea. Corresponding systems and methods are also disclosed.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 10, 2022
    Inventors: Kanthaiah Koka, Leonid M. Litvak
  • Publication number: 20220339445
    Abstract: An illustrative cochlear implant system includes an electrode lead having an array of electrodes, a cochlear implant coupled with the electrode lead and configured to be implanted within a recipient together with the electrode lead, and a processing unit communicatively coupled to the cochlear implant. The processing unit is configured to direct the cochlear implant to apply stimulation to the recipient by way of the array of electrodes. The processing unit is further configured to detect, by way of one or more electrodes included in the array of electrodes, a cortical potential produced by the recipient. Based on the detected cortical potential, the processing unit is configured to determine a fitting parameter associated with the cochlear implant system. Corresponding systems and methods are also disclosed.
    Type: Application
    Filed: October 23, 2020
    Publication date: October 27, 2022
    Inventors: Leonid M. Litvak, R. Tissa Karunasiri, Hannah A. Glick, Kanthaiah Koka, Chen Chen, Jason Galster
  • Publication number: 20220331586
    Abstract: An example method includes delivering, via an electrical stimulation device, one or more electrical stimulation signals to a patient, sensing one or more stimulation-evoked signals that are evoked by stimulation of nerves or muscles of the patient due to the delivery of the one or more electrical stimulation signals, determining a quality of the one or more stimulation-evoked signals, and outputting, based on the quality of the one or more sensed stimulation-evoked signals being below a quality threshold, one or more instructions to improve the quality of one or more subsequent stimulation-evoked signals.
    Type: Application
    Filed: April 12, 2022
    Publication date: October 20, 2022
    Inventors: Sarah J. Offutt, Julia P. Slopsema, Katelynn M. Johnson, Lisa M. Jungbauer Nikolas, Lance Zirpel, Leonid M. Litvak, Simeng Zhang, Katie C. Bittner
  • Publication number: 20220330844
    Abstract: An illustrative system includes a stimulation device configured to apply stimulation to a recipient, a sensing device configured to detect a physiological condition of the recipient, and a processing unit communicatively coupled to the stimulation device and the sensing device. The processing unit determines a stimulation strategy that is customized to the recipient and includes stimulation frames and stimulation gaps. The processing unit then directs the stimulation device to apply the stimulation to the recipient in accordance with the stimulation strategy by applying the stimulation only during time that corresponds to the stimulation frames. The processing unit also directs the sensing device to detect the physiological condition of the recipient in accordance with the stimulation strategy by detecting only during time that corresponds to the stimulation gaps. Based on the detected physiological condition, the processing unit performs an action.
    Type: Application
    Filed: October 23, 2020
    Publication date: October 20, 2022
    Inventors: Leonid M. Litvak, R. Tissa Karunasiri, Hannah A. Glick, Kanthaiah Koka, Chen Chen, Anthony J. Spahr, Jason Galster, Dean Swan
  • Publication number: 20220331584
    Abstract: A sacral lead system including a sacral lead configured to for insertion within a sacral foramen of a patient. The sacral lead supports one or more electrodes which may be configured as one or more stimulation electrodes and/or one or more sensing electrodes. The sacral lead is configured to deliver a stimulation signal to a patient using at least one stimulation electrode and sense an evoked signal produced in response to the stimulation signal using at least one sensing electrode. The sacral lead system may be configured to position the at least one stimulation electrode and/or the at least one sensing electrode within, dorsal, or ventral to the sacral foramen. The sacral lead system may include stimulation circuitry configured to generate the stimulation signal and sensing circuitry configured to receive a signal indicative of the evoked signal.
    Type: Application
    Filed: April 12, 2022
    Publication date: October 20, 2022
    Inventors: Sarah J. Offutt, Katie C. Bittner, Julia P. Slopsema, Leonid M. Litvak, Lisa M. Jungbauer Nikolas, Katelynn M. Johnson, Lance Zirpel, Simeng Zhang
  • Publication number: 20220331589
    Abstract: An example method includes delivering one or more electrical stimulation signals to a patient, sensing a composite stimulation-evoked signal comprising a composite of signals generated by one or more signal sources in response to the one or more electrical stimulation signals, and controlling delivery of electrical stimulation therapy to the patient based on the composite stimulation-evoked signal.
    Type: Application
    Filed: April 12, 2022
    Publication date: October 20, 2022
    Inventors: Katie C. Bittner, Sarah J. Offutt, Julia P. Slopsema, Leonid M. Litvak, Lance Zirpel, Lisa M. Jungbauer Nikolas, Katelynn M. Johnson, Simeng Zhang
  • Patent number: 11452866
    Abstract: An exemplary electrode locating system performs an excitation spread measurement by directing a first electrode to generate an electrical pulse and, in response to the generation of the electrical pulse, detecting a voltage between a second electrode and a reference that are both distinct from the first electrode. The first and second electrodes are included in a plurality of electrodes disposed on an electrode lead included within a cochlear implant system and that comprises a proximal portion configured to be coupled with a cochlear implant and a distal portion configured to be inserted into a cochlea of a patient by way of an insertion procedure. Based on the excitation spread measurement, the electrode locating system determines whether at least one of the first electrode and the second electrode is located within the cochlea. Corresponding methods are also described.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: September 27, 2022
    Assignee: Advanced Bionics AG
    Inventors: Kanthaiah Koka, Leonid M. Litvak
  • Publication number: 20220296898
    Abstract: An illustrative proximity detection system directs a first electrode of an electrode lead to apply a first pulse and directs a second electrode of the electrode lead to apply a second pulse concurrently with the first pulse so as to form a dipole that generates a field. The first and second electrodes are each configured as stimulating electrodes that apply stimulation to the cochlear tissue when the electrode lead is located at a resting position subsequent to a surgical insertion of the electrode lead into a cochlea of a patient. After the pulses are applied, and based on an energy magnitude of the field that is detected to reflect from cochlear tissue located within the field, the proximity detection system determines a proximity of the electrode lead to the cochlear tissue. Corresponding systems and methods are also disclosed.
    Type: Application
    Filed: June 6, 2022
    Publication date: September 22, 2022
    Inventors: Kanthaiah Koka, Leonid M. Litvak
  • Publication number: 20220266029
    Abstract: An example method of delivering electrical stimulation includes obtaining, by an implantable medical device (IMD) connected to a lead carrying a plurality of electrodes, one or more stimulation parameters; and delivering, by the IMD and based on the one or more stimulation parameters, electrical stimulation therapy via the plurality of electrodes, wherein delivering the electrical stimulation therapy comprises scanning delivery of the electrical stimulation therapy through different pairs of electrodes of the plurality of electrodes.
    Type: Application
    Filed: February 23, 2022
    Publication date: August 25, 2022
    Inventors: Jeffery M. Kramer, Andrew J. Cleland, Leonid M. Litvak