Patents by Inventor Lester Lampert

Lester Lampert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957066
    Abstract: Embodiments of the present disclosure describe quantum circuit assemblies that include one or more filter modules integrated in a package with a quantum circuit component having at least one qubit device. Integration may be such that both the quantum circuit component and the filter module(s) are at least partially inside a chamber formed by a radiation shield structure that is configured to attenuate electromagnetic radiation incident on the quantum circuit component and the filter module(s). Placing filter modules under the protection provided by the radiation shield structure may boost coherence of the qubits. Some example filter modules may include filter(s) configured to convert electromagnetic radiation to heat and filter(s) configured to perform bandpass filtering. Modular blocks of in-line filters inside the shielded environment may allow to route signals to the quantum circuit component with reduced noise and speed up installation of a complete quantum computer.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Florian Luthi, Lester Lampert
  • Patent number: 11942516
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; a first gate above the quantum well stack, wherein the first gate includes a first gate metal and a first gate dielectric; and a second gate above the quantum well stack, wherein the second gate includes a second gate metal and a second gate dielectric, and the first gate is at least partially between a portion of the second gate and the quantum well stack.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Nicole K. Thomas, Ravi Pillarisetty, Kanwaljit Singh, Hubert C. George, David J. Michalak, Lester Lampert, Zachary R. Yoscovits, Roman Caudillo, Jeanette M. Roberts, James S. Clarke
  • Patent number: 11922274
    Abstract: Quantum dot devices with three of more accumulation gates provided over a single row of a quantum dot formation region are disclosed. Each accumulation gate is electrically coupled to a respective doped region. In this manner, multiple single electron transistors (SETs) are provided along the row. Side and/or center screening gates may be used to apply microwave pulses for qubit control and to control electrostatics so that source and drain regions of the multiple SETs with quantum dots formed along the single row of a quantum dot formation region are sufficiently isolated from one another. Such quantum dot devices provide strong spatial localization of the quantum dots, good control over quantum dot interactions and manipulation, good scalability in the number of quantum dots included in the device, and/or design flexibility in making electrical connections to the quantum dot devices to integrate the quantum dot devices in larger computing devices.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: March 5, 2024
    Assignee: Intel Corporation
    Inventors: Hubert C. George, James S. Clarke, Ravi Pillarisetty, Brennen Karl Mueller, Stephanie A. Bojarski, Eric M. Henry, Roza Kotlyar, Thomas Francis Watson, Lester Lampert, Samuel Frederick Neyens
  • Patent number: 11907808
    Abstract: Apparatus and method for measurement-free (MF) quantum error correction (QEC). For example, one embodiment of a method comprises: determining an error syndrome on a first subset of ancilla qubits of a quantum processor; decoding the error syndrome to produce decoded results on a second subset of ancilla qubits of the quantum processor; applying the decoded results to one or more system qubits; and unconditionally resetting the first subset and/or second subset of ancilla qubits to remove entropy and/or noise from the quantum system, wherein the operations of determining the error syndrome, decoding the error syndrome, applying the error syndrome, and unconditionally resetting the first and/or second subset of ancilla qubits are performed responsive to a qubit controller executing quantum control instructions provided from or derived from a script and without transmitting measurement data related to the error syndrome to a non-quantum computing device.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: February 20, 2024
    Assignee: Intel Corporation
    Inventors: Albert Schmitz, Anne Matsuura, Ravi Pillarisetty, Shavindra Premaratne, Justin Hogaboam, Lester Lampert
  • Patent number: 11749721
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; a first gate and an adjacent second gate above the quantum well stack; and a gate wall between the first gate and the second gate, wherein the gate wall includes a spacer and a capping material, the spacer has a top and a bottom, the bottom of the spacer is between the top of the spacer and the quantum well stack, and the capping material is proximate to the top of the spacer.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: September 5, 2023
    Assignee: Intel Corporation
    Inventors: Hubert C. George, Ravi Pillarisetty, Lester Lampert, James S. Clarke, Nicole K. Thomas, Roman Caudillo, David J. Michalak, Jeanette M. Roberts
  • Patent number: 11721724
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack including a quantum well layer, wherein the quantum well layer includes an isotopically purified material; a gate dielectric above the quantum well stack; and a gate metal above the gate dielectric, wherein the gate dielectric is between the quantum well layer and the gate metal.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: August 8, 2023
    Assignee: Intel Corporation
    Inventors: Nicole K. Thomas, James S. Clarke, Jessica M. Torres, Ravi Pillarisetty, Kanwaljit Singh, Payam Amin, Hubert C. George, Jeanette M. Roberts, Roman Caudillo, David J. Michalak, Zachary R. Yoscovits, Lester Lampert
  • Patent number: 11699747
    Abstract: Disclosed herein are quantum dot devices with multiple layers of gate metal, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; an insulating material above the quantum well stack, wherein the insulating material includes a trench; and a gate on the insulating material and extending into the trench, wherein the gate includes a first gate metal in the trench and a second gate metal above the first gate metal.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: July 11, 2023
    Assignee: Intel Corporation
    Inventors: Hubert C. George, Sarah Atanasov, Ravi Pillarisetty, Lester Lampert, James S. Clarke, Nicole K. Thomas, Roman Caudillo, Kanwaljit Singh, David J. Michalak, Jeanette M. Roberts, Stephanie A. Bojarski
  • Publication number: 20230196152
    Abstract: An array of quantum dot qubits (e.g., an array of spin qubits) relies on a gradient magnetic field to ensure that the qubits are separated in frequency in order to be individually addressable. Furthermore, a strong magnetic field gradient is required to electrically drive the electric dipole spin resonance (EDSR) of the qubits. Quantum dot devices disclosed herein use microcoil arrangements for providing a gradient magnetic field, the microcoil arrangements integrated on the same chip (e.g., on the same die or wafer) as quantum dot qubits themselves. Unlike previous approaches to quantum dot formation and manipulation, various embodiments of the quantum dot devices disclosed herein may enable improved control over magnetic fields and their gradients to realize better frequency targeting of individual qubits, help minimize adverse effects of charge noise on qubit decoherence and provide good scalability in the number of quantum dots included in the device.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Florian Luethi, Hubert C. George, Felix Frederic Leonhard Borjans, Simon Schaal, Lester Lampert, Thomas Francis Watson, Jeanette M. Roberts, Jong Seok Park, Sushil Subramanian, Stefano Pellerano
  • Patent number: 11682701
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack and a plurality of linear arrays of gates above the quantum well stack to control quantum dot formation in the quantum well stack. An insulating material may be between a first linear array of gates and a second linear array of gates, the insulating material may be between individual gates in the first linear array of gates, and gate metal of the first linear array of gates may extend over the insulating material.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: June 20, 2023
    Assignee: Intel Corporation
    Inventors: Stephanie A. Bojarski, Hubert C. George, Sarah Atanasov, Nicole K. Thomas, Ravi Pillarisetty, Lester Lampert, Thomas Francis Watson, David J. Michalak, Roman Caudillo, Jeanette M. Roberts, James S. Clarke
  • Patent number: 11658212
    Abstract: Disclosed herein are quantum dot devices with conductive liners, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include a base, a first fin extending from the base, a second fin extending from the base, a conductive material between the first fin and the second fin, and a dielectric material between the conductive material and the first fin.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: May 23, 2023
    Assignee: Intel Corporation
    Inventors: Hubert C. George, Ravi Pillarisetty, Lester Lampert, James S. Clarke, Nicole K. Thomas, Stephanie A. Bojarski, Roman Caudillo, David J. Michalak, Jeanette M. Roberts, Thomas Francis Watson
  • Publication number: 20230129732
    Abstract: Apparatus and method for measurement-free (MF) quantum error correction (QEC). For example, one embodiment of a method comprises: determining an error syndrome on a first subset of ancilla qubits of a quantum processor; decoding the error syndrome to produce decoded results on a second subset of ancilla qubits of the quantum processor; applying the decoded results to one or more system qubits; and unconditionally resetting the first subset and/or second subset of ancilla qubits to remove entropy and/or noise from the quantum system, wherein the operations of determining the error syndrome, decoding the error syndrome, applying the error syndrome, and unconditionally resetting the first and/or second subset of ancilla qubits are performed responsive to a qubit controller executing quantum control instructions provided from or derived from a script and without transmitting measurement data related to the error syndrome to a non-quantum computing device.
    Type: Application
    Filed: September 1, 2021
    Publication date: April 27, 2023
    Inventors: ALBERT SCHMITZ, ANNE MATSUURA, RAVI PILLARISETTY, SHAVINDRA PREMARATNE, JUSTIN HOGABOAM, LESTER LAMPERT
  • Patent number: 11616126
    Abstract: A quantum dot device is disclosed that includes a quantum well stack, a first and a second plunger gates above the quantum well stack, and a passive barrier element provided in a portion of the quantum well stack between the first and the second plunger gates. The passive barrier element may serve as means for localizing charge in the quantum dot device and may be used to replace charge localization control by means of a barrier gate. In general, a quantum dot device with a plurality of plunger gates provided over a given quantum well stack may include a respective passive barrier element between any, or all, of adjacent plunger gates in the manner as described for the first and second plunger gates.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: March 28, 2023
    Assignee: Intel Corporation
    Inventors: Hubert C. George, Ravi Pillarisetty, Lester Lampert, James S. Clarke, Nicole K. Thomas, Roman Caudillo, David J. Michalak, Jeanette M. Roberts
  • Patent number: 11450765
    Abstract: A quantum dot device is disclosed that includes a fin and a gate above the fin. The fin may extend away from a base and include a quantum well stack in which one or more quantum dots may be formed during operation of the quantum dot device. The gate may include a gate electrode material having a first portion and a second portion, where the first portion is above the quantum well stack and the second portion is a portion that is not above the quantum well stack and is separated from the base by an insulating material. The quantum dot device may further include a metal structure between the second portion of the gate electrode material and the base, forming a portion of a diode provided in series with the gate, which diode may provide at least some ESD protection for the quantum dot device.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: September 20, 2022
    Assignee: Intel Corporation
    Inventors: Hubert C. George, Ravi Pillarisetty, Lester Lampert, James S. Clarke, Nicole K. Thomas, Roman Caudillo, Kanwaljit Singh, David J. Michalak, Jeanette M. Roberts
  • Patent number: 11424324
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; a first gate and an adjacent second gate above the quantum well stack; and a multi-spacer between the first gate and the second gate, wherein the multi-spacer includes a first spacer and a second spacer different from the first spacer, and the first spacer is at least partially between the quantum well stack and the second spacer.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Hubert C. George, Ravi Pillarisetty, Lester Lampert, James S. Clarke, Nicole K. Thomas, Roman Caudillo, David J. Michalak, Jeanette M. Roberts
  • Patent number: 11417755
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack including a quantum well layer; a first gate above the quantum well stack, wherein the first gate includes a first gate metal; and a second gate above the quantum well stack, wherein the second gate includes a second gate metal, and a material structure of the second gate metal is different from a material structure of the first gate metal; wherein the quantum well layer has a first strain under the first gate, a second strain under the second gate, and the first strain is different from the second strain.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: August 16, 2022
    Assignee: Intel Corporation
    Inventors: Kanwaljit Singh, Ravi Pillarisetty, Nicole K. Thomas, Payam Amin, Roman Caudillo, Hubert C. George, Jeanette M. Roberts, Zachary R. Yoscovits, James S. Clarke, Lester Lampert, David J. Michalak
  • Patent number: 11417765
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; a first gate above the quantum well stack, wherein the first gate includes a first gate metal and a first gate dielectric layer; and a second gate above the quantum well stack, wherein the second gate includes a second gate metal and a second gate dielectric layer, and the second gate dielectric layer extends over the first gate.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: August 16, 2022
    Assignee: Intel Corporation
    Inventors: Nicole K. Thomas, Ravi Pillarisetty, Kanwaljit Singh, Hubert C. George, David J. Michalak, Lester Lampert, Zachary R. Yoscovits, Roman Caudillo, Jeanette M. Roberts, James S. Clarke
  • Publication number: 20220216305
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; a first gate above the quantum well stack, wherein the first gate includes a first gate metal and a first gate dielectric; and a second gate above the quantum well stack, wherein the second gate includes a second gate metal and a second gate dielectric, and the first gate is at least partially between a portion of the second gate and the quantum well stack.
    Type: Application
    Filed: March 25, 2022
    Publication date: July 7, 2022
    Applicant: Intel Corporation
    Inventors: Nicole K. Thomas, Ravi Pillarisetty, Kanwaljit Singh, Hubert C. George, David J. Michalak, Lester Lampert, Zachary R. Yoscovits, Roman Caudillo, Jeanette M. Roberts, James S. Clarke
  • Patent number: 11355623
    Abstract: Embodiments of the present disclosure describe a method of fabricating spin qubit device assemblies that utilize dopant-based spin qubits, i.e. spin qubit devices which operate by including a donor or an acceptor dopant atom in a semiconductor host layer. The method includes, first, providing a pair of gate electrodes over a semiconductor host layer, and then providing a window structure between the first and second gate electrodes, the window structure being a continuous solid material extending between the first and second electrodes and covering the semiconductor host layer except for an opening through which a dopant atom is to be implanted in the semiconductor host layer. By using a defined gate-first process, the method may address the scalability challenges and create a deterministic path for fabricating dopant-based spin qubits in desired locations, promoting wafer-scale integration of dopant-based spin qubit devices for use in quantum computing devices.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: June 7, 2022
    Assignee: Intel Corporation
    Inventors: Lester Lampert, James S. Clarke, Jeanette M. Roberts, Ravi Pillarisetty, David J. Michalak, Kanwaljit Singh, Roman Caudillo, Hubert C. George, Zachary R. Yoscovits, Nicole K. Thomas
  • Patent number: 11335778
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; a first gate above the quantum well stack, wherein the first gate includes a first gate metal and a first gate dielectric; and a second gate above the quantum well stack, wherein the second gate includes a second gate metal and a second gate dielectric, and the first gate is at least partially between a portion of the second gate and the quantum well stack.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: May 17, 2022
    Assignee: Intel Corporation
    Inventors: Nicole K. Thomas, Ravi Pillarisetty, Kanwaljit Singh, Hubert C. George, David J. Michalak, Lester Lampert, Zachary R. Yoscovits, Roman Caudillo, Jeanette M. Roberts, James S. Clarke
  • Patent number: 11183564
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack including a quantum well layer and a barrier layer; a first gate metal above the quantum well stack, wherein the barrier layer is between the first gate metal and the quantum well layer; and a second gate metal above the quantum well stack, wherein the barrier layer is between the second gate metal and the quantum well layer, and a material structure of the second gate metal is different from a material structure of the first gate metal.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: November 23, 2021
    Assignee: Intel Corporation
    Inventors: Nicole K. Thomas, Ravi Pillarisetty, Payam Amin, Roza Kotlyar, Patrick H. Keys, Hubert C. George, Kanwaljit Singh, James S. Clarke, David J. Michalak, Lester Lampert, Zachary R. Yoscovits, Roman Caudillo, Jeanette M. Roberts