Patents by Inventor Lester Lampert

Lester Lampert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190043973
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a base; a fin extending away from the base, wherein the fin has a first side face and a second side face, and the fin includes a quantum well layer; and a gate above the fin, wherein the gate extends down along the first side face.
    Type: Application
    Filed: June 26, 2018
    Publication date: February 7, 2019
    Applicant: Intel Corporation
    Inventors: Hubert C. George, Lester Lampert, James S. Clarke, Ravi Pillarisetty, Zachary R. Yoscovits, Nicole K. Thomas, Roman Caudillo, Kanwaljit Singh, David J. Michalak, Jeanette M. Roberts
  • Publication number: 20190043975
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a base; a fin extending away from the base, wherein the fin includes a quantum well layer; a first dielectric material around a bottom portion of the fin; and a second dielectric material around a top portion of the fin, wherein the second dielectric material is different from the first dielectric material.
    Type: Application
    Filed: June 25, 2018
    Publication date: February 7, 2019
    Applicant: Intel Corporation
    Inventors: Hubert C. George, David J. Michalak, Ravi Pillarisetty, Lester Lampert, James S. Clarke, Zachary R. Yoscovits, Nicole K. Thomas, Roman Caudillo, Kanwaljit Singh, Jeanette M. Roberts
  • Publication number: 20190043952
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; a first gate above the quantum well stack, wherein the first gate includes a first gate metal and a first gate dielectric; and a second gate above the quantum well stack, wherein the second gate includes a second gate metal and a second gate dielectric, and the first gate is at least partially between a portion of the second gate and the quantum well stack.
    Type: Application
    Filed: June 26, 2018
    Publication date: February 7, 2019
    Applicant: Intel Corporation
    Inventors: Nicole K. Thomas, Ravi Pillarisetty, Kanwaljit Singh, Hubert C. George, David J. Michalak, Lester Lampert, Zachary R. Yoscovits, Roman Caudillo, Jeanette M. Roberts, James S. Clarke
  • Publication number: 20190043955
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; a first gate and an adjacent second gate above the quantum well stack; and a gate wall between the first gate and the second gate, wherein the gate wall includes a spacer and a capping material, the spacer has a top and a bottom, the bottom of the spacer is between the top of the spacer and the quantum well stack, and the capping material is proximate to the top of the spacer.
    Type: Application
    Filed: September 28, 2018
    Publication date: February 7, 2019
    Applicant: Intel Corporation
    Inventors: Hubert C. George, Ravi Pillarisetty, Lester Lampert, James S. Clarke, Nicole K. Thomas, Roman Caudillo, David J. Michalak, Jeanette M. Roberts
  • Publication number: 20190044048
    Abstract: Disclosed herein are fabrication techniques for providing metal gates in quantum devices, as well as related quantum devices. For example, in some embodiments, a method of manufacturing a quantum device may include providing a gate dielectric over a qubit device layer, providing over the gate dielectric a pattern of non-metallic elements referred to as “gate support elements,” and depositing a gate metal on sidewalls of the gate support elements to form a plurality of gates of the quantum device.
    Type: Application
    Filed: February 8, 2018
    Publication date: February 7, 2019
    Applicant: Intel Corporation
    Inventors: Hubert C. George, Zachary R. Yoscovits, Nicole K. Thomas, Lester Lampert, James S. Clarke, Jeanette M. Roberts, Ravi Pillarisetty, David J. Michalak, Kanwaljit Singh, Roman Caudillo
  • Publication number: 20190043974
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; a layer of gate dielectric above the quantum well stack; a first gate metal and a second gate metal above the layer of gate dielectric; and a gate wall between the first gate metal and the second gate metal, wherein the gate wall is above the layer of gate dielectric, and the gate wall includes a first dielectric material and a second dielectric material different from the first dielectric material.
    Type: Application
    Filed: February 20, 2018
    Publication date: February 7, 2019
    Applicant: Intel Corporation
    Inventors: Nicole K. Thomas, Ravi Pillarisetty, Kanwaljit Singh, Hubert C. George, Jeanette M. Roberts, David J. Michalak, Roman Caudillo, Zachary R. Yoscovits, Lester Lampert, James S. Clarke, Willy Rachmady
  • Publication number: 20190044668
    Abstract: One aspect of the present disclosure provides a quantum circuit assembly that includes a substrate with one or more qubit devices, and at least one demultiplexer included in a single chip with the qubit device(s). The demultiplexer is configured to receive a combined signal from external electronics, the combined signal including a combination of a plurality of signals in different frequency ranges, and to demultiplex said plurality of signals within the combined signal. The demultiplexer is further configured to apply different demultiplexed signals to different lines of a single qubit device, or/and to different qubit devices. Providing such demultiplexers on-chip with the qubit devices advantageously allows reducing the number of input/output lines coupling the chip with qubit devices and the external electronics.
    Type: Application
    Filed: March 6, 2018
    Publication date: February 7, 2019
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Javier A. Falcon, Lester Lampert
  • Publication number: 20190044045
    Abstract: Embodiments of the present disclosure describe use of isotopically purified materials in donor- or acceptor-based spin qubit devices and assemblies. An exemplary spin qubit device assembly may include a semiconductor host layer that includes an isotopically purified material, a dopant atom in the semiconductor host layer, and a gate proximate to the dopant atom. An isotopically purified material may include a lower atomic-percent of isotopes with nonzero nuclear spin than the natural abundance of those isotopies in the non-isotopically purified material. Reducing the presence of isotopes with nonzero nuclear spin in a semiconductor host layer may improve qubit coherence and thus performance of spin qubit devices and assemblies.
    Type: Application
    Filed: March 19, 2018
    Publication date: February 7, 2019
    Applicant: Intel Corporation
    Inventors: Nicole K. Thomas, James S. Clarke, Jessica M. Torres, Lester Lampert, Ravi Pillarisetty, Hubert C. George, Kanwaljit Singh, Jeanette M. Roberts, Roman Caudillo, Zachary R. Yoscovits, David J. Michalak
  • Publication number: 20190044066
    Abstract: Embodiments of the present disclosure propose two methods for integrating vacancy centers (VCs) on semiconductor substrates for forming VC-based spin qubit devices. The first method is based on using a self-assembly process for integrating VC islands on a semiconductor substrate. The second method is based on using a buffer layer of a III-N semiconductor material over a semiconductor substrate, and then integrating VC islands in an insulating carbon-based material such as diamond that is either grown as a layer on the III-N buffer layer or grown in the openings formed in the III-N buffer layer. Integration of VC islands on semiconductor substrates typically used in semiconductor manufacturing according to any of these methods may provide a substantial improvement with respect to conventional approaches to building VC-based spin qubit devices and may promote wafer-scale integration of VC-based spin qubits for use in quantum computing devices.
    Type: Application
    Filed: March 22, 2018
    Publication date: February 7, 2019
    Applicant: INTEL CORPORATION
    Inventors: Nicole K. Thomas, Marko Radosavljevic, Sansaptak Dasgupta, Ravi Pillarisetty, Kanwaljit Singh, Hubert C. George, Jeanette M. Roberts, David J. Michalak, Roman Caudillo, Zachary R. Yoscovits, Lester Lampert, James S. Clarke
  • Publication number: 20190044044
    Abstract: Embodiments of the present disclosure describe two approaches to providing flux bias line structures for superconducting qubit devices. The first approach, applicable to flux bias line structures that include at least one portion that terminates with a ground connection, resides in terminating such a portion with a ground connection that is electrically isolated from the common ground plane of a quantum circuit assembly. The second approach resides in providing a SQUID loop of a superconducting qubit device and a portion of the flux bias line structure over a portion of a substrate that is elevated with respect to other portions of the substrate. These approaches may be used or alone or in combination, and may improve grounding of and reduce crosstalk caused by flux bias lines in quantum circuit assemblies.
    Type: Application
    Filed: February 15, 2018
    Publication date: February 7, 2019
    Applicant: Intel Corporation
    Inventors: Lester Lampert, Adel A. Elsherbini, James S. Clarke, Jeanette M. Roberts, Ravi Pillarisetty, David J. Michalak, Kanwaljit Singh, Roman Caudillo, Zachary R. Yoscovits, Nicole K. Thomas, Hubert C. George, Stefano Pellerano
  • Publication number: 20170247551
    Abstract: Disclosed embodiments concern a composition comprising a diatom frustule and two or more photocatalytic nanoparticles dispersed on the surface of the frustule. Also disclosed are embodiments of a method for making the composition. The nanoparticles are dispersed such that they are separate and not in physical contact with each other. An average distance between the nanoparticles may be from greater than 0 nm to 100 nm. The nanoparticles may comprise a dopant material. Paint compositions comprising the diatom frustule compositions are also contemplated. The diatom frustule composition may be useful for removing and/or degrading volatile organic compounds, such as those present in the atmosphere.
    Type: Application
    Filed: May 17, 2017
    Publication date: August 31, 2017
    Applicant: Portland State University
    Inventors: Haiyan Li, Lester Lampert