Patents by Inventor Li-Han Chen

Li-Han Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020169893
    Abstract: A system and method is provided for synchronizing computer data such that work can be conducted from a remote location. In the preferred embodiment of the present invention, a computer data synchronization system includes a database, a server, and a synch application adapted to communicate with a plurality of reception devices through the server. More particularly, the synch application is adapted to receive synchronization data from a controlling one of the plurality of reception devices such that a portion of original computer data can be provided to the plurality of reception devices, where the portion of original computer data is based upon a synchronized portion of the original computer data that is being displayed on the controlling one of the plurality of reception devices.
    Type: Application
    Filed: May 9, 2001
    Publication date: November 14, 2002
    Inventors: Li-Han Chen, Michael Lawrence Takayama, Dominic Koman Chan
  • Patent number: 6299703
    Abstract: An article comprising an alloy exhibiting high magnetostriction in relatively low applied magnetic fields is provided, the alloy capable of being formed in a relatively easy manner and having desirable physical properties. The Co—Fe alloy of the invention exhibits a magnetostriction of at least 100×10−6 in a magnetic field less than 400 Oe, advantageously in a magnetic field less than 100 Oe. The alloy is formed by plastically deforming the alloy, e.g., by cold rolling, to a reduction in cross-sectional area of at least 50%, and then heat treating the alloy to induce recrystallization. This combination of plastic deformation and recrystallization was found to provide desirable grain growth and microstructure. The resultant alloy is useful in a variety of device components, including transducers, frequency filters, signal delay lines, and optical fiber grating devices.
    Type: Grant
    Filed: February 9, 2000
    Date of Patent: October 9, 2001
    Assignee: Agere Systems Guardian Corp.
    Inventors: Li-Han Chen, Sungho Jin, Timothy J. Klemmer, Hareesh Mavoori
  • Patent number: 6153020
    Abstract: An article comprising an alloy exhibiting high magnetostriction in relatively low applied magnetic fields is provided, the alloy capable of being formed in a relatively easy manner and having desirable physical properties. The Co--Fe alloy of the invention exhibits a magnetostriction of at least 100.times.10.sup.-6 in a magnetic field less than 400 Oe, advantageously in a magnetic field less than 100 Oe. The alloy is formed by plastically deforming the alloy, e.g., by cold rolling, to a reduction in cross-sectional area of at least 50%, and then heat treating the alloy to induce recrystallization. This combination of plastic deformation and recrystallization was found to provide desirable grain growth and microstructure. The resultant alloy is useful in a variety of device components, including transducers, frequency filters, signal delay lines, and optical fiber grating devices.
    Type: Grant
    Filed: March 3, 1999
    Date of Patent: November 28, 2000
    Assignee: Lucent Technologies
    Inventors: Li-Han Chen, Sungho Jin, Timothy J. Klemmer, Hareesh Mavoori
  • Patent number: 5976715
    Abstract: The invention is embodied in a soft magnetic thin film article comprising an iron--chromium-nitrogen (Fe--Cr--N) based alloy and methods for making such article. The soft magnetic thin film article is formed using an iron--chromium--nitrogen based alloy with tantalum in one embodiment and with at least one of the elements titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), molybdenum (Mo), niobium (Nb) or tungsten (W) in another embodiment. The article is formed such that the alloy has a relatively high saturation magnetization (e.g., greater than approximately 15 kG) and a relatively low coercivity (e.g., less than approximately 2.0 oersteds) in an as-deposited condition or, alternatively, with a very low temperature treatment (e.g., below approximately 150.degree. C.). The inventive films are suitable for use in electromagnetic devices, for example, in microtransformer cores, inductor cores and in magnetic read-write heads.
    Type: Grant
    Filed: November 6, 1997
    Date of Patent: November 2, 1999
    Assignee: Lucent Techologies Inc.
    Inventors: Li-Han Chen, Sungho Jin, Wei Zhu, Robert Bruce van Dover
  • Patent number: 5780175
    Abstract: The invention is embodied in a soft magnetic thin film article comprising an iron-chromium-nitrogen (Fe--Cr--N) based alloy and methods for making such article. The soft magnetic thin film article is formed using an iron-chromium-nitrogen based alloy with tantalum in one embodiment and with at least one of the elements titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), molybdenum (Mo), niobium (Nb) or tungsten (W) in another embodiment. The article is formed such that the alloy has a relatively high saturation magnetization (e.g., greater than approximately 15 kG) and a relatively low coercivity (e.g., less than approximately 2.0 oersteds) in an as-deposited condition or, alternatively, with a very low temperature treatment (e.g., below approximately 150.degree. C). The inventive films are suitable for use in electromagnetic devices, for example, in microtransformer cores, inductor cores and in magnetic read-write heads.
    Type: Grant
    Filed: February 2, 1996
    Date of Patent: July 14, 1998
    Assignee: Lucent Technologies Inc.
    Inventors: Li-Han Chen, Sungho Jin, Wei Zhu, Robert Bruce van Dover
  • Patent number: 5381125
    Abstract: A magnetoresistive medium for sensing magnetic fields is formed by a metallic alloy that contains spinodally decomposed ferromagnetic particles having at least one thickness dimension equal to or less than approximately 0.01 .mu.m.
    Type: Grant
    Filed: July 20, 1993
    Date of Patent: January 10, 1995
    Assignee: AT&T Corp.
    Inventors: Li-Han Chen, Sungho Jin, Thomas H. Tiefel
  • Patent number: 5313840
    Abstract: In accordance with the present invention, a tactile sensor capable of detecting shear force comprises an anisotropically conductive material disposed between a conductive cursor and an array of contacts. In one preferred embodiment, the anisotropic material is affixed to the contact array, and the cursor is affixed to an elastomeric skin overlying the material. Movement of the cursor is detected by interconnection of the contacts underlying the cursor. In a second embodiment, the anisotropic material is affixed to the cursor but is free to move over the contact array in response to shear force. Movement of the cursor is detected by interconnection of the underlying contacts. Such arrangements can also detect pressure and temperature.
    Type: Grant
    Filed: October 30, 1992
    Date of Patent: May 24, 1994
    Assignee: AT&T Bell Laboratories
    Inventors: Li-Han Chen, Sungho Jin