Patents by Inventor Li Jiang

Li Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190067583
    Abstract: A method for making an organic light emitting diode includes providing a first carbon nanotube composite structure having a first surface and a second surface opposite to the first surface. The first carbon nanotube composite structure includes a polymer and a plurality of first carbon nanotubes dispersed in the polymer. A preform structure includes a support body, an anode electrode, a hole transport layer, and an organic light emitting layer stacked on each other in that order. The preform structure is located on the first surface, wherein the first surface is in direct contact with the organic light emitting layer. A cathode electrode is formed on the second surface.
    Type: Application
    Filed: December 22, 2017
    Publication date: February 28, 2019
    Inventors: WEN NING, PENG LIU, KAI-LI JIANG, SHOU-SHAN FAN
  • Publication number: 20190067623
    Abstract: An organic light emitting diode includes a support body, an anode electrode, a hole transport layer, an organic light emitting layer and an electron transport layer stacked on each other in that order. The electron transport layer has a first surface and a second surface opposite to the first surface. The electron transport layer includes a polymer and a plurality of first carbon nanotubes dispersed in the polymer, and partial surface of the plurality of first carbon nanotubes is exposed from the first surface and is in direct contact with the organic light emitting layer.
    Type: Application
    Filed: December 22, 2017
    Publication date: February 28, 2019
    Inventors: WEN NING, PENG LIU, KAI-LI JIANG, SHOU-SHAN FAN
  • Patent number: 10216088
    Abstract: The disclosure relates to a photolithography method based on electronic beam. The method includes: providing an electronic beam; making the electron beam transmit a two dimensional nanomaterial to form a transmission electron beam and a number of diffraction electron beams; shielding the transmission electron beam; and radiating a surface of an object by the plurality of diffraction electron beams. The photolithography method is high efficiency and has low cost.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: February 26, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Peng Liu, Wei Zhao, Xiao-Yang Lin, Duan-Liang Zhou, Chun-Hai Zhang, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10217952
    Abstract: The present disclosure relates to a nano-scale transistor. The nano-scale transistor includes a source electrode, a drain electrode, a gate electrode and a nano-heterostructure. The nano-heterostructure is electrically coupled with the source electrode and the drain electrode. The gate electrode is insulated from the nano-heterostructure, the source electrode and the drain electrode via an insulating layer. The nano-heterostructure includes a first carbon nanotube, a second carbon nanotube and a semiconductor layer. The semiconductor layer includes a first surface and a second surface opposite to the first surface. The first carbon nanotube is located on the first surface, the second carbon nanotube is located on the second surface.
    Type: Grant
    Filed: June 3, 2017
    Date of Patent: February 26, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jin Zhang, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10209134
    Abstract: An photosensitive device, the sensor comprising: a plurality of photosensitive units distributed in an array, each photosensitive unit configured to receive and convert light signal, wherein the photosensitive unit comprises a detecting element and a polarizer, the detecting element comprises a carbon nanotube structure comprising a plurality of carbon nanotubes oriented along the same direction, and the polarizer is configured to generate polarized light to irradiate a part surface of the carbon nanotube structure; a measuring device configured to measure temperature differences or potential differences generated in the carbon nanotube structure by irradiating; a data processor configured to analyze and calculate the potential differences or the temperature differences to obtain the wavelength of the light signal.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: February 19, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ling Zhang, Yang Wu, Kai-Li Jiang, Chang-Hong Liu, Jia-Ping Wang, Shou-Shan Fan
  • Patent number: 10209285
    Abstract: An electrometer includes a sensing module and a control module. The sensing module includes an electrostatic sensing element. The electrostatic sensing element includes two opposite ends. Each end of the electrostatic sensing element is electrically connected to the control module. When an object with electrostatic charge is near but does not touch the electrostatic sensing element, the resistance of the electrostatic sensing element can be changed. The control module electrically connect to the electrostatic sensing element, the control module measures the resistance variation ?R of the electrostatic sensing element and converts the resistance variation ?R into the static electricity potential.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: February 19, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Xin-He Wang, Dong-Qi Li, Jiang-Tao Wang, Wen-Yun Wu, Yu-Jun He, Peng Liu, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10205096
    Abstract: The present disclosure relates to a method for making nanoscale heterostructure. The method includes: providing a support and forming a first carbon nanotube layer on the support, and the first carbon nanotube layer comprises a plurality of first source carbon nanotubes; forming a semiconductor layer on the first carbon nanotube layer; covering a second carbon nanotube layer on the semiconductor layer, and the second carbon nanotube layer comprises a plurality of second source carbon nanotubes; finding and labeling a first carbon nanotube in the first carbon nanotube layer and a second carbon nanotube in the second carbon nanotube layer; removing the plurality of first source carbon nanotubes and the plurality of second source carbon nanotubes; and annealing the multilayer structure.
    Type: Grant
    Filed: June 3, 2017
    Date of Patent: February 12, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jin Zhang, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10205056
    Abstract: A light emitting diode includes a substrate, a first semiconductor layer, an active layer, a second semiconductor layer, a first electrode, a second electrode, a static electrode and a carbon nanotube structure. The first semiconductor layer, the active layer, and the second semiconductor layer are stacked on the substrate. The first electrode is located on and electrically connected to the first semiconductor layer. The carbon nanotube structure is located on and electrically connected to the second semiconductor layer. The second electrode is located on and electrically connected to the carbon nanotube structure. The static electrode is located between the second semiconductor layer and the carbon nanotube structure. The carbon nanotube structure includes a first portion in direct contact with the second semiconductor layer and a second portion sandwiched between the static electrode and the second electrode.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: February 12, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Qun-Qing Li, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10205098
    Abstract: A semiconductor structure includes a semiconductor layer, a carbon nanotube and a conductive film. The semiconductor layer includes a first surface and a second surface. A thickness of the semiconductor layer ranges from 1 nanometer to 100 nanometers. The carbon nanotube is located on the first surface of the semiconductor. The conductive film is located on the second surface of the semiconductor. The conductive film is formed on the second surface by a depositing method. The carbon nanotube, the semiconductor layer and the conductive film are stacked with each other to form a three-layered stereoscopic structure.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: February 12, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jin Zhang, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10202927
    Abstract: Methods and systems for controlling combustion performance of an engine during recompression HCCI combustion are provided. The method includes regulating a valve actuation timing and a fuel injection timing to cause a combustion phasing of at least one cylinder of the engine to approach a target combustion phasing, and estimating current combustion state information based on the combustion phasing. The current combustion state information includes at least one of a temperature, a pressure, and a pre-combustion charge composition associated with the at least one cylinder. The method further includes determining a target fuel injection amount, and determining whether the target fuel injection amount would require actuator settings that violate predetermined constraints in order to cause the combustion phasing to approach the target combustion phasing. A fuel injection amount is adjusted when the target fuel injection amount would require actuator settings that violate the predetermined constraints.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: February 12, 2019
    Assignees: Robert Bosch GmbH, The Regents of the University of Michigan
    Inventors: Shyam Jade, Erik Hellstrom, Anna Stefanopoulou, Li Jiang
  • Publication number: 20190025925
    Abstract: Electromechanical polymer (EMP) actuators are used to create haptic effects on a user interface deface, such as a keyboard. The keys of the keyboard may be embossed in a top layer to provide better key definition and to house the EMP actuator. Specifically, an EMP actuator is housed inside an embossed graphic layer that covers a key of the keyboard. Such a keyboard has a significant user interface value. For example, the embossed key provides the tactile effect of the presence of a key with edges, while allowing for the localized control of haptic vibrations. For such applications, an EMP transducer provides high strains, vibrations or both under control of an electric field. Furthermore, the EMP transducer can generate strong vibrations. When the frequency of the vibrations falls within the acoustic range, the EMP transducer can generate audible sound, thereby functioning as an audio speaker.
    Type: Application
    Filed: September 24, 2018
    Publication date: January 24, 2019
    Inventors: Brian C. Zellers, Li Jiang, Christophe Ramstein, Stephen Davis
  • Publication number: 20190025216
    Abstract: A device for imaging one dimension nanomaterials is provided. The device includes an optical microscope with a liquid immersion objective, a laser device, and a spectrometer. The laser device is configured to provide an incident light beam with a continuous spectrum. The spectrometer is configured to obtain spectral information of the one dimensional nanomaterials.
    Type: Application
    Filed: September 27, 2018
    Publication date: January 24, 2019
    Inventors: Wen-Yun Wu, Jing-Ying Yue, Xiao-Yang Lin, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10186663
    Abstract: A method for making an organic light emitting diode includes providing a carbon nanotube composite structure including a polymer and a plurality of first carbon nanotubes dispersed in the polymer. The polymer has a first surface and a second surface opposite to the first surface, and a partial surface of the plurality of first carbon nanotubes is exposed from the second surface of the polymer. An organic light emitting layer is formed on the second surface. A hole transport layer is formed on a surface of the organic light emitting layer away from the carbon nanotube composite structure. An anode electrode is formed on a surface of the hole transport layer away from the organic light emitting layer. A cathode electrode is formed on the first surface.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: January 22, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Wen Ning, Peng Liu, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20180375248
    Abstract: An electrical connector includes an insulative housing and a number of terminals retained in the insulative housing. The insulative housing has a mating surface, a mounting surface, and a slot going through the mounting surface. The terminal received in the slot includes an interference portion retained in the slot, a contacting portion disposed around the mating surface, and a soldering leg extending downwardly beyond the mounting surface. The interference portion has two barbs disposed at two opposite sides thereof, respectively. The terminal includes a blocking portion connecting between the interference portion and the soldering leg. The width of the blocking portion is greater than the width of the interference portion.
    Type: Application
    Filed: June 21, 2018
    Publication date: December 27, 2018
    Inventors: LU-LU SHA, GUO-HUA ZHANG, LI-JIANG WANG
  • Patent number: 10151849
    Abstract: Desirable completion zones can be identified using closure stress in combination with one or more other attributes such as porosity. One computer-based well placement method includes using the computer to: process a seismic data volume to map the spatial distribution of a seismic-based CSS attribute; acquire logs from one or more boreholes in the subsurface region; derive from the logs a relationship between CSS and a minimum in-situ stress; apply the relationship to the CSS attribute map to produce a landing map that highlights desirable completion zones; and place one or more wells in the desirable completion zones. The borehole logs may include direct measurements of minimum in-situ stress (acquired via microfracture testing), sonic tool measurements of P-wave and S-wave velocity, and density tool measurements of bulk formation density.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: December 11, 2018
    Assignee: Chevron U.S.A. Inc.
    Inventors: Mayank Malik, John DeSantis, Fuju Chen, Li Jiang, Saijin Huang, John A. Best
  • Patent number: 10151703
    Abstract: A method for imaging one dimension nanomaterials is provided. Firstly, one dimension nanomaterials sample, an optical microscope with a liquid immersion objective and a liquid are provided. Secondly, the one dimensional nanomaterials sample is immersed in the liquid. Thirdly, the one dimensional nanomaterials sample is illuminated by an incident beam to generate resonance Rayleigh scattering. Forthly, the liquid immersion objective is immersed into the liquid to get a resonance Rayleigh scattering (RRS) image of the one dimensional nanomaterials sample. Fifthly, spectra of the one dimensional nanomaterials sample are measured to obtain chirality of the one dimensional nanomaterials sample.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: December 11, 2018
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Wen-Yun Wu, Jing-Ying Yue, Xiao-Yang Lin, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20180351195
    Abstract: A lithium-sulfur battery separator includes a separator substrate and a functional layer coated on the separator substrate. The functional layer includes a carbon nanotube layer and a hafnium oxide layer. The carbon nanotube layer includes a plurality of carbon nanotubes. The hafnium oxide layer includes a plurality of hafnium oxide nanoparticles. The hafnium oxide nanoparticles are adsorbed on surfaces of the carbon nanotubes. The present disclosure also relates to a lithium-sulfur battery comprising the lithium-sulfur battery separator.
    Type: Application
    Filed: May 9, 2018
    Publication date: December 6, 2018
    Inventors: WEI-BANG KONG, JIA-PING WANG, KAI-LI JIANG, SHOU-SHAN FAN
  • Publication number: 20180351146
    Abstract: A method for making a lithium-sulfur battery separator includes providing a separator substrate comprising a first surface and a second surface opposite to the first surface; and forming a functional layer on at least one of the first surface and the second surface. A method of forming the functional layer includes providing a carbon nanotube layer comprising a plurality of carbon nanotubes; etching the carbon nanotube layer to form defects on surfaces of the plurality of carbon nanotubes; and forming a hafnium oxide layer on the defects to form a carbon nanotube/hafnium oxide composite layer.
    Type: Application
    Filed: May 9, 2018
    Publication date: December 6, 2018
    Inventors: WEI-BANG KONG, JIA-PING WANG, KAI-LI JIANG, SHOU-SHAN FAN
  • Patent number: 10145879
    Abstract: An electrometer includes a sensing module and a control module. The sensing module includes a plurality of electrostatic sensing elements and a plurality of second electrodes. The plurality of electrostatic sensing elements are single walled carbon nanotubes or few-walled carbon nanotubes. The plurality of electrostatic sensing elements and the plurality of second electrodes are alternately arranged in a series connection. The control module is coupled to the two ends of the series connection and configured to measure a resistance variation ?R of the series connection and convert the resistance variation ?R into a static electricity potential.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: December 4, 2018
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Xin-He Wang, Dong-Qi Li, Jiang-Tao Wang, Wen-Yun Wu, Yu-Jun He, Peng Liu, Qing-Yu Zhao, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20180342578
    Abstract: A semiconductor device includes a gate electrode, an insulating layer, a first carbon nanotube, a second carbon nanotube, a P-type semiconductor layer, an N-type semiconductor layer, a conductive film, a first electrode, a second electrode and a third electrode. The insulating layer is located on a surface of the gate electrode. The first carbon nanotube and the second carbon nanotube are located on a surface of the insulating layer. The P-type semiconductor layer and the N-type semiconductor layer are located on the surface of the insulating layer and apart from each other. The conductive film is located on surfaces of the P-type semiconductor layer and the N-type semiconductor layer. The first electrode is electrically connected with the first carbon nanotube. The second electrode is electrically connected with the second carbon nanotube. The third electrode is electrically connected with the conductive film.
    Type: Application
    Filed: March 9, 2018
    Publication date: November 29, 2018
    Inventors: JIN ZHANG, YANG WEI, KAI-LI JIANG, SHOU-SHAN FAN