Patents by Inventor Li-Qun Xia

Li-Qun Xia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6878620
    Abstract: Methods and apparatus for protecting the dielectric layer sidewalls of openings, such as vias and trenches, in semiconductor substrates are provided. A pre-liner and a liner are deposited over the sidewalls of the openings as part of integrated processing sequences that either do not remove the photoresist until subsequent processing or remove the photoresist with a plasma etch that does not contaminate the sidewalls of the openings.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: April 12, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Son Van Nguyen, Li-Qun Xia, Srinivas D. Nemani
  • Publication number: 20050070128
    Abstract: A method for providing a dielectric film having enhanced adhesion and stability. The method includes a post deposition treatment that densifies the film in a reducing atmosphere to enhance stability if the film is to be cured ex-situ. The densification generally takes place in a reducing environment while heating the substrate. The densification treatment is particularly suitable for silicon-oxygen-carbon low dielectric constant films that have been deposited at low temperature.
    Type: Application
    Filed: November 15, 2004
    Publication date: March 31, 2005
    Applicant: Applied Materials, Inc.
    Inventors: Li-Qun Xia, Frederic Gaillard, Ellie Yieh, Tian Lim
  • Publication number: 20050042885
    Abstract: A method for depositing an organosilicate layer on a substrate includes varying one or more processing conditions during a process sequence for depositing an organosilicate layer from a gas mixture comprising an organosilicon compound in the presence of RF power in a processing chamber. In one aspect, the distance between the substrate and a gas distribution manifold in the processing chamber is varied during processing. Preferably, the method of depositing an organosilicate layer minimizes plasma-induced damage to the substrate.
    Type: Application
    Filed: August 20, 2003
    Publication date: February 24, 2005
    Inventors: Lihua Li, Tsutomu Tanaka, Tzu-Fang Huang, Li-Qun Xia, Dian Sugiarto, Visweswaren Sivaramakrishnan, Peter Lee, Mario Silvetti
  • Publication number: 20050042858
    Abstract: A method is provided for processing a substrate including providing a processing gas comprising hydrogen gas and an organosilicon compound comprising a phenyl group to the processing chamber, and reacting the processing gas to deposit a low k silicon carbide barrier layer useful as a barrier layer in damascene or dual damascene applications with low k dielectric materials.
    Type: Application
    Filed: September 13, 2004
    Publication date: February 24, 2005
    Inventors: Lihua Li, Tzu-Fang Huang, Li-Qun Xia
  • Publication number: 20050042889
    Abstract: Methods and apparatus are provided for processing a substrate with a bilayer barrier layer. In one aspect, the invention provides a method for processing a substrate including depositing a nitrogen containing barrier layer on a substrate surface and then depositing a nitrogen free barrier layer thereon. The barrier layer may be deposited over dielectric materials, conductive materials, or both. The bilayer barrier layer may also be used as an etch stop, an anti-reflective coating, or a passivation layer.
    Type: Application
    Filed: July 9, 2004
    Publication date: February 24, 2005
    Inventors: Albert Lee, Annamalai Lakshmanan, Bok Kim, Li-Qun Xia, Mei-Yee Shek
  • Patent number: 6858923
    Abstract: A method for providing a dielectric film having enhanced adhesion and stability. The method includes a post deposition treatment that densifies the film in a reducing atmosphere to enhance stability if the film is to be cured ex-situ. The densification generally takes place in a reducing environment while heating the substrate. The densification treatment is particularly suitable for silicon-oxygen-carbon low dielectric constant films that have been deposited at low temperature.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: February 22, 2005
    Assignee: Applied Materials Inc.
    Inventors: Li-Qun Xia, Frederic Gaillard, Ellie Yieh, Tian H. Lim
  • Patent number: 6849562
    Abstract: A method for depositing a low k dielectric film comprising silicon, carbon, and nitrogen is provided. The low k dielectric film is formed by a gas mixture comprising a silicon source, a carbon source, and NR1R2R3, wherein R1, R2, and R3 are selected from the group consisting of alkyl and phenyl groups. The low k dielectric film may be used as a barrier layer, an etch stop, an anti-reflective coating, or a hard mask.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: February 1, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Chi-I Lang, Li-Qun Xia, Ping Xu, Louis Yang
  • Publication number: 20050020048
    Abstract: A method of forming a silicon carbide layer for use in integrated circuit fabrication processes is provided. The silicon carbide layer is formed by reacting a gas mixture comprising a silicon source, a carbon source, and a dopant in the presence of an electric field. The as-deposited silicon carbide layer has a compressibility that varies as a function of the amount of dopant present in the gas mixture during later formation.
    Type: Application
    Filed: July 20, 2004
    Publication date: January 27, 2005
    Inventors: Srinivas Nemani, Li-Qun Xia, Dian Sugiarto, Ellie Yieh, Ping Xu, Francimar Campana-Schmitt, Jia Lee
  • Patent number: 6838393
    Abstract: Methods are provided for depositing a silicon carbide layer having significantly reduced current leakage. The silicon carbide layer may be a barrier layer or part of a barrier bilayer that also includes a barrier layer. Methods for depositing oxygen-doped silicon carbide barrier layers are also provided. The silicon carbide layer may be deposited by reacting a gas mixture comprising an organosilicon compound, an aliphatic hydrocarbon comprising a carbon-carbon double bond or a carbon-carbon triple bond, and optionally, helium in a plasma. Alternatively, the silicon carbide layer may be deposited by reacting a gas mixture comprising hydrogen or argon and an organosilicon compound in a plasma.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: January 4, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Kang Sub Yim, Melissa M. Tam, Dian Sugiarto, Chi-I Lang, Peter Wai-Man Lee, Li-Qun Xia
  • Publication number: 20040234688
    Abstract: A method for depositing a low dielectric constant film having a dielectric constant of about 3.5 or less is provided by blending one or more cyclic organosilicon compounds, one or more aliphatic organosilicon compounds, and one or more low molecular weight aliphatic hydrocarbon compounds. In one aspect, a gas mixture comprising one or more cyclic organosilicon compounds, one or more aliphatic organosilicon compounds, one or more aliphatic hydrocarbon compounds, one or more oxidizing gases, and a carrier gas is reacted at conditions sufficient to deposit a low dielectric constant film on a substrate surface.
    Type: Application
    Filed: June 23, 2004
    Publication date: November 25, 2004
    Inventors: Vinita Singh, Srinivas D. Nemani, Yi Zheng, Lihua Li, Tzu-Fang Huang, Li-Qun Xia, Ellie Yieh
  • Patent number: 6815373
    Abstract: A method for depositing a low dielectric constant film having a dielectric constant of about 3.5 or less is provided by blending one or more cyclic organosilicon compounds, one or more aliphatic organosilicon compounds, and one or more low molecular weight aliphatic hydrocarbon compounds. In one aspect, a gas mixture comprising one or more cyclic organosilicon compounds, one or more aliphatic organosilicon compounds, one or more aliphatic hydrocarbon compounds, one or more oxidizing gases, and a carrier gas is reacted at conditions sufficient to deposit a low dielectric constant film on a substrate surface.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: November 9, 2004
    Assignee: Applied Materials Inc.
    Inventors: Vinita Singh, Srinivas D. Nemani, Yi Zheng, Lihua Li, Tzu-Fang Huang, Li-Qun Xia, Ellie Yieh
  • Patent number: 6806207
    Abstract: A silicon oxide layer is produced by plasma enhanced decomposition of an organosilicon compound to deposit films having a carbon content of at least 1% by atomic weight. An optional carrier gas may be introduced to facilitate the deposition process at a flow rate less than or equal to the flow rate of the organosilicon compounds. An oxygen rich surface may be formed adjacent the silicon oxide layer by temporarily increasing oxidation of the organosilicon compound.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: October 19, 2004
    Assignee: Applied Materials Inc.
    Inventors: Tzu-Fang Huang, Yung-Cheng Lu, Li-Qun Xia, Ellie Yieh, Wai-Fan Yau, David W. Cheung, Ralf B. Willecke, Kuowei Liu, Ju-Hyung Lee, Farhad K. Moghadam, Yeming Jim Ma
  • Publication number: 20040198070
    Abstract: A method is provided for processing a substrate including providing a processing gas comprising an organosilicon compound comprising a phenyl group to the processing chamber, and reacting the processing gas to deposit a low k silicon carbide barrier layer useful as a barrier layer in damascene or dual damascene applications with low k dielectric materials.
    Type: Application
    Filed: April 20, 2004
    Publication date: October 7, 2004
    Inventors: Li-Qun Xia, Ping Xu, Louis Yang
  • Patent number: 6797643
    Abstract: A method of depositing a low dielectric constant film on a substrate. In one embodiment, the method includes the steps of positioning the substrate in a deposition chamber, providing a gas mixture to the deposition chamber, in which the gas mixture is comprised of one or more cyclic organosilicon compounds, one or more aliphatic compounds and one or more oxidizing gases. The method further includes reacting the gas mixture in the presence of an electric field to form the low dielectric constant film on the semiconductor substrate. The electric field is generated using a very high frequency power having a frequency in a range of about 20 MHz to about 100 MHz.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: September 28, 2004
    Assignee: Applied Materials Inc.
    Inventors: Juan Carlos Rocha-Alvarez, Maosheng Zhao, Ying Yu, Shankar Venkataraman, Srinivas D. Nemani, Li-Qun Xia
  • Publication number: 20040180556
    Abstract: A method of treating a dielectric layer having a low dielectric constant, where the dielectric layer has been processed in a manner that causes a change in the dielectric constant of an affected region of the layer. The treatment of the affected region may comprise etching, sputtering, annealing, or combinations thereof. The treatment returns the dielectric constant of the dielectric layer to substantially the dielectric constant that existed before processing.
    Type: Application
    Filed: March 11, 2003
    Publication date: September 16, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Kang-Lie Chiang, Mahmoud Dahimene, Xiaoye Zhao, Yan Ye, Gerardo A. Delgadino, Hoiman Hung, Li-Qun Xia, Giuseppina R. Conti
  • Patent number: 6790788
    Abstract: A method is provided for processing a substrate including providing a processing gas comprising hydrogen gas and an organosilicon compound comprising a phenyl group to the processing chamber, and reacting the processing gas to deposit a low k silicon carbide barrier layer useful as a barrier layer in damascene or dual damascene applications with low k dielectric materials.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: September 14, 2004
    Assignee: Applied Materials Inc.
    Inventors: Lihua Li, Tzu-Fang Huang, Li-Qun Xia
  • Publication number: 20040175929
    Abstract: Methods are provided for processing a substrate for depositing an adhesion layer having a low dielectric constant between two low k dielectric layers. In one aspect, the invention provides a method for processing a substrate including depositing a barrier layer on the substrate, wherein the barrier layer comprises silicon and carbon and has a dielectric constant less than 4, depositing a dielectric initiation layer adjacent the barrier layer, and depositing a first dielectric layer adjacent the dielectric initiation layer, wherein the dielectric layer comprises silicon, oxygen, and carbon and has a dielectric constant of about 3 or less.
    Type: Application
    Filed: March 7, 2003
    Publication date: September 9, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Francimar Campana Schmitt, Li-Qun Xia, Son Van Nguyen, Shankar Venkataraman
  • Patent number: 6784119
    Abstract: A method for processing a substrate comprising depositing a dielectric layer comprising silicon, oxygen, and carbon on the substrate by chemical vapor deposition, wherein the dielectric layer has a carbon content of at least 1% by atomic weight and a dielectric constant of less than about 3, and depositing a silicon and carbon containing layer on the dielectric layer. The dielectric constant of a dielectric layer deposited by reaction of an organosilicon compound having three or more methyl groups is significantly reduced by further depositing an amorphous hydrogenated silicon carbide layer by reaction of an alkylsilane in a plasma of a relatively inert gas.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: August 31, 2004
    Assignee: Applied Materials Inc.
    Inventors: Frederic Gaillard, Li-Qun Xia, Tian-Hoe Lim, Ellie Yieh, Wai-Fan Yau, Shin-Puu Jeng, Kuowei Liu, Yung-Cheng Lu
  • Publication number: 20040166665
    Abstract: A method for processing a substrate comprising depositing a dielectric layer comprising silicon, oxygen, and carbon on the substrate by chemical vapor deposition, wherein the dielectric layer has a carbon content of at least 1% by atomic weight and a dielectric constant of less than about 3, and depositing a silicon and carbon containing layer on the dielectric layer. The dielectric constant of a dielectric layer deposited by reaction of an organosilicon compound having three or more methyl groups is significantly reduced by further depositing an amorphous hydrogenated silicon carbide layer by reaction of an alkylsilane in a plasma of a relatively inert gas.
    Type: Application
    Filed: February 27, 2004
    Publication date: August 26, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Frederic Gaillard, Li-Qun Xia, Tian-Hoe Lim, Ellie Yieh, Wai-Fan Yau, Shin-Puu Jeng, Kuowei Liu, Yung-Cheng Lu
  • Patent number: 6777171
    Abstract: A method of forming a silicon carbide layer, a silicon nitride layer, an organosilicate layer is disclosed. The silicon carbide layer is formed by reacting a gas mixture comprising a silicon source, a carbon source, and a fluorine source in the presence of an electric field. The silicon nitride layer is formed by reacting a gas mixture comprising a silicon source, a nitrogen source, and a fluorine source in the presence of an electric field. The organosilicate layer is formed by reacting a gas mixture comprising a silicon source, a carbon source, an oxygen source and a fluorine source in the presence of an electric field. The silicon carbide layer, the silicon nitride layer and the organosilicate layer are all compatible with integrated circuit fabrication processes.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: August 17, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Ping Xu, Jia Lee, Ishing Lou, Li-Qun Xia