Patents by Inventor Li-Qun Xia

Li-Qun Xia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060171653
    Abstract: According to one embodiment of the invention, a method of modifying a mechanical, physical and/or electrical property of a dielectric layer comprises exposing the dielectric layer to a first dose of electron beam radiation at a first energy level; and thereafter, exposing the dielectric layer to a second dose of electron beam radiation at a second energy level that is different from the first energy level.
    Type: Application
    Filed: February 1, 2005
    Publication date: August 3, 2006
    Applicant: Applied Materials, Inc.
    Inventors: Alexandros Demos, Li-Qun Xia, Tzu-Fang Huang, Wen Zhu
  • Publication number: 20060154493
    Abstract: A method for forming sidewall spacers on a gate stack by depositing one or more layers of silicon containing materials using PECVD process(es) on a gate structure to produce a spacer having an overall k value of about 3.0 to about 5.0. The silicon containing materials may be silicon carbide, oxygen doped silicon carbide, nitrogen doped silicon carbide, carbon doped silicon nitride, nitrogen doped silicon oxycarbide, or combinations thereof. The deposition is performed in a plasma enhanced chemical vapor deposition chamber and the deposition temperature is less than 450° C. The sidewall spacers so produced provide good capacity resistance, as well as excellent structural stability and hermeticity.
    Type: Application
    Filed: January 10, 2005
    Publication date: July 13, 2006
    Inventors: Reza Arghavani, Michael Kwan, Li-Qun Xia, Kang Yim
  • Patent number: 7074708
    Abstract: A method for processing a substrate including depositing a dielectric layer containing silicon, oxygen, and carbon on the substrate by chemical vapor deposition, wherein the dielectric layer has a carbon content of at least 1% by atomic weight and a dielectric constant of less than about 3, and depositing a silicon and carbon containing layer on the dielectric layer. The dielectric constant of a dielectric layer deposited by reaction of an organosilicon compound having three or more methyl groups is significantly reduced by further depositing an amorphous hydrogenated silicon carbide layer by reaction of an alkylsilane in a plasma of a relatively inert gas.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: July 11, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Frederic Gaillard, Li-Qun Xia, Tian-Hoe Lim, Ellie Yieh, Wai-Fan Yau, Shin-Puu Jeng, Kuowei Liu, Yung-Cheng Lu
  • Publication number: 20060141805
    Abstract: A method of forming a silicon carbide layer for use in integrated circuit fabrication processes is provided. The silicon carbide layer is formed by reacting a gas mixture comprising a silicon source, a carbon source, and a dopant in the presence of an electric field. The as-deposited silicon carbide layer has a compressibility that varies as a function of the amount of dopant present in the gas mixture during later formation.
    Type: Application
    Filed: February 21, 2006
    Publication date: June 29, 2006
    Inventors: Srinivas Nemani, Li-Qun Xia, Dian Sugiarto, Ellie Yieh, Ping Xu, Francimar Campana-Schmitt, Jia Lee
  • Patent number: 7060330
    Abstract: The present invention generally provides a method for depositing a low dielectric constant film using an e-beam treatment. In one aspect, the method includes delivering a gas mixture comprising one or more organosilicon compounds and one or more hydrocarbon compounds having at least one cyclic group to a substrate surface at deposition conditions sufficient to deposit a non-cured film comprising the at least one cyclic group on the substrate surface. The method further includes substantially removing the at least one cyclic group from the non-cured film using an electron beam at curing conditions sufficient to provide a dielectric constant less than 2.5 and a hardness greater than 0.5 GPa.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: June 13, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Yi Zheng, Srinivas D. Nemani, Li-Qun Xia, Eric Hollar, Kang Sub Yim
  • Patent number: 7056560
    Abstract: A method for depositing a low dielectric constant film is provided by reacting a gas mixture including one or more linear, oxygen-free organosilicon compounds, one or more oxygen-free hydrocarbon compounds comprising one ring and one or two carbon-carbon double bonds in the ring, and one or more oxidizing gases. Optionally, the low dielectric constant film is post-treated after it is deposited. In one aspect, the post treatment is an electron beam treatment.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: June 6, 2006
    Assignee: Applies Materials Inc.
    Inventors: Kang Sub Yim, Yi Zheng, Srinivas D. Nemani, Li-Qun Xia, Eric P. Hollar
  • Patent number: 7049249
    Abstract: A method is provided for processing a substrate including providing a processing gas comprising hydrogen gas and an organosilicon compound comprising a phenyl group to the processing chamber, and reacting the processing gas to deposit a low k silicon carbide barrier layer useful as a barrier layer in damascene or dual damascene applications with low k dielectric materials.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: May 23, 2006
    Assignee: Applied Materials
    Inventors: Lihua Li, Tzu-Fang Huang, Li-Qun Xia
  • Publication number: 20060105106
    Abstract: A stressed film is formed on a substrate. The substrate is placed in a process zone and a plasma is formed of a process gas provided in the process zone, the process gas having silicon-containing gas and nitrogen-containing gas. A diluent gas such as nitrogen can also be added. The as-deposited stressed material can be exposed to ultraviolet radiation or electron beams to increase the stress value of the deposited material. In addition or in the alternative, a nitrogen plasma treatment can be used to increase the stress value of the material during deposition. Pulsed plasma methods to deposit stressed materials are also described.
    Type: Application
    Filed: February 11, 2005
    Publication date: May 18, 2006
    Inventors: Mihaela Balseanu, Kee Jung, Lihua Huang, Li-Qun Xia, Rongping Wang, Derek Witty, Lewis Stern, Martin Seamons, Hichem M'Saad, Michael Kwan
  • Publication number: 20060093756
    Abstract: A method for seasoning a deposition chamber wherein the chamber components and walls are densely coated with a material that does not contain carbon prior to deposition of an organo-silicon material on a substrate. An optional carbon-containing layer may be deposited therebetween. A chamber cleaning method using low energy plasma and low pressure to remove residue from internal chamber surfaces is provided and may be combined with the seasoning process.
    Type: Application
    Filed: November 3, 2004
    Publication date: May 4, 2006
    Inventors: Nagarajan Rajagopalan, Li-Qun Xia, Mihaela Balseanu, Thomas Nowak, Ranjana Shah, Huiwen Xu, Chad Peterson, Derek Witty, Hichem M'Saad
  • Patent number: 7034409
    Abstract: A method is provided for processing a substrate including treating a surface of a dielectric layer comprising silicon and carbon by exposing the dielectric layer comprising silicon and carbon to a plasma of an inert gas, and depositing a photoresist on the dielectric layer comprising silicon and carbon. The dielectric layer may comprise a first dielectric layer comprising silicon, carbon, and nitrogen, and a second layer of nitrogen-free silicon and carbon containing material in situ on the first dielectric layer, and a third dielectric layer comprising silicon, oxygen, and carbon on the second dielectric layer.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: April 25, 2006
    Assignee: Applied Materials Inc.
    Inventors: Ping Xu, Li-Qun Xia, Larry A. Dworkin, Mehul Naik
  • Patent number: 7030041
    Abstract: Methods are provided for processing a substrate for depositing an adhesion layer having a low dielectric constant between two low k dielectric layers. In one aspect, the invention provides a method for processing a substrate including introducing an organosilicon compound and an oxidizing gas at a first ratio of organosilicon compound to oxidizing gas into the processing chamber, generating a plasma of the oxidizing gas and the organosilicon compound to form an initiation layer on a barrier layer comprising at least silicon and carbon, introducing the organosilicon compound and the oxidizing gas at a second ratio of organosilicon compound to oxidizing gas greater than the first ratio into the processing chamber, and depositing a first dielectric layer adjacent the dielectric initiation layer.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: April 18, 2006
    Assignee: Applied Materials Inc.
    Inventors: Lihua Li, Tzu-Fang Huang, Jerry Sugiarto, legal representative, Li-Qun Xia, Peter Wai-Man Lee, Hichem M'Saad, Zhenjiang Cui, Sohyun Park, Dian Sugiarto, deceased
  • Publication number: 20060054183
    Abstract: A method and apparatus for cleaning a semiconductor manufacturing chamber comprising introducing a heteroatomic fluorine containing gas to a remote plasma source, disassociating the heteroatomic fluorine containing gas, forming diatomic fluorine, transporting gas from the remote plasma source into a processing region of the chamber, and ionizing the diatomic fluorine with an in situ plasma.
    Type: Application
    Filed: April 1, 2005
    Publication date: March 16, 2006
    Inventors: Thomas Nowak, Li-Qun Xia, Juan Carlos Rocha-Alvarez, Brian Hopper, Yuri Trachuk, Ganesh Balasubramanian, Daemian Raj
  • Publication number: 20060043591
    Abstract: Low K dielectric films exhibiting low mechanical stress may be formed utilizing various techniques in accordance with the present invention. In one embodiment, carbon-containing silicon oxide films are formed by plasma-assisted chemical vapor deposition at low temperatures (300° C. or less). In accordance with another embodiment, as-deposited carbon containing silicon oxide films incorporate a porogen whose subsequent liberation reduces film stress.
    Type: Application
    Filed: June 10, 2005
    Publication date: March 2, 2006
    Applicant: Applied Materials, Inc.
    Inventors: Kang Yim, Lihua Huang, Francimar Schmitt, Li-Qun Xia
  • Publication number: 20060046520
    Abstract: A method of forming a graded dielectric layer on an underlying layer including flowing a mixture of a silicon-carbon containing gas, an oxygen containing gas and a carrier gas through a showerhead comprising a blocking plate and a faceplate to form an oxide rich portion of the graded dielectric layer, where the silicon-carbon containing gas has an initial flow rate, flowing the silicon-carbon containing gas at a first intermediate flow rate for about 0.5 seconds or longer, where the first intermediate flow rate is higher than the initial flow rate, and flowing the silicon-carbon containing gas at a fastest flow rate higher than the first intermediate flow rate to form a carbon rich portion of the graded dielectric layer.
    Type: Application
    Filed: September 1, 2004
    Publication date: March 2, 2006
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Deenesh Padhi, Sohyun Park, Ganesh Balasubramanian, Juan Rocha-Alvarez, Li-Qun Xia, Derek Witty, Hichem M'Saad
  • Publication number: 20060046479
    Abstract: Methods are provided for processing a substrate for depositing an adhesion layer between a conductive material and a dielectric layer. In one aspect, the invention provides a method for processing a substrate including positioning a substrate having a conductive material disposed thereon, introducing a reducing compound or a silicon based compound, exposing the conductive material to the reducing compound or the silicon based compound, and depositing a silicon carbide layer without breaking vacuum.
    Type: Application
    Filed: August 30, 2004
    Publication date: March 2, 2006
    Inventors: Nagarajan Rajagopalan, Meiyee Shek, Albert Lee, Annamalai Lakshmanan, Li-Qun Xia, Zhenjiang Cui
  • Patent number: 7001850
    Abstract: A method of forming a silicon carbide layer for use in integrated circuit fabrication processes is provided. The silicon carbide layer is formed by reacting a gas mixture comprising a silicon source, a carbon source, and a dopant in the presence of an electric field. The as-deposited silicon carbide layer has a compressibility that varies as a function of the amount of dopant present in the gas mixture during later formation.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: February 21, 2006
    Assignee: Applied Materials Inc.
    Inventors: Srinivas D Nemani, Li-Qun Xia, Dian Sugiarto, Ellie Yieh, Ping Xu, Francimar Campana-Schmitt, Jia Lee
  • Publication number: 20050260864
    Abstract: A silicon oxide layer is produced by plasma enhanced decomposition of an organosilicon compound to deposit films having a carbon content of at least 1% by atomic weight. An optional carrier gas may be introduced to facilitate the deposition process at a flow rate less than or equal to the flow rate of the organosilicon compounds. An oxygen rich surface may be formed adjacent the silicon oxide layer by temporarily increasing oxidation of the organosilicon compound.
    Type: Application
    Filed: January 27, 2004
    Publication date: November 24, 2005
    Inventors: Tzu-Fang Huang, Yung-Cheng Lu, Li-Qun Xia, Ellie Yieh, Wai-Fan Yau, David Cheung, Ralf Willecke, Kuowei Liu, Ju-Hyung Lee, Farhad Moghadam, Yeming Ma
  • Publication number: 20050255697
    Abstract: A method of selectively etching organosilicate layers in integrated circuit fabrication processes is disclosed. The organosilicate layers are selectively etched using a hydrogen-containing fluorocarbon gas. The hydrogen-containing fluorocarbon gas may be used to selectively etch an organosilicate layer formed on a silicon oxide stop etch layer when fabricating a damascene structure.
    Type: Application
    Filed: March 9, 2005
    Publication date: November 17, 2005
    Inventors: Huong Nguyen, Michael Barnes, Li-Qun Xia, Mehul Naik
  • Publication number: 20050250348
    Abstract: A method of processing a substrate including depositing a low dielectric constant film comprising silicon, carbon, and oxygen on the substrate and depositing an oxide rich cap on the low dielectric constant film is provided. The low dielectric constant film is deposited from a gas mixture comprising an organosilicon compound and an oxidizing gas in the presence of RF power in a chamber. The RF power and a flow of the organosilicon compound and the oxidizing gas are continued in the chamber after the deposition of the low dielectric constant film at flow rates sufficient to deposit an oxide rich cap on the low dielectric constant film.
    Type: Application
    Filed: May 6, 2004
    Publication date: November 10, 2005
    Inventors: Li-Qun Xia, Huiwen Xu, Derek Witty, Hichem M'Saad, Dustin Ho, Juan Rocha-Alvarez
  • Publication number: 20050230834
    Abstract: Embodiments in accordance with the present invention relate to multi-stage curing processes for chemical vapor deposited low K materials. In certain embodiments, a combination of electron beam irradiation and thermal exposure steps may be employed to control selective outgassing of porogens incorporated into the film, resulting in the formation of nanopores. In accordance with one specific embodiment, a low K layer resulting from reaction between a silicon-containing component and a non-silicon containing component featuring labile groups, may be cured by the initial application of thermal energy, followed by the application of radiation in the form of an electron beam.
    Type: Application
    Filed: March 21, 2005
    Publication date: October 20, 2005
    Applicant: Applied Materials, Inc.
    Inventors: Francimar Schmitt, Yi Zheng, Kang Yim, Sang Ahn, Lester D'Cruz, Dustin Ho, Alexandros Demos, Li-Qun Xia, Derek Witty, Hichem M'Saad