Patents by Inventor Liang Lin

Liang Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230386946
    Abstract: A semiconductor structure includes a packaging substrate containing at least one trench located between a first region and a second region, a first chip module bonded to the first region of the packaging substrate through first solder material portions, and a second chip module bonded to the second region of the packaging substrate through second solder material portions. A first underfill material portion laterally surrounds the first solder material portions and extends into a first portion of the at least one trench. A second underfill material portion laterally surrounds the second solder material portions and extends into a second portion of the at least one trench. The at least one trench is used to absorb stress to the underfill material portions.
    Type: Application
    Filed: May 31, 2022
    Publication date: November 30, 2023
    Inventors: Hsien-Wei Chen, Meng-Liang Lin, Shin-Puu Jeng
  • Publication number: 20230386956
    Abstract: A semiconductor package and a manufacturing method thereof are provided. The semiconductor package includes at least a circuit substrate, a semiconductor die and a filling material. The circuit substrate has a first surface, a second surface opposite to the first surface and a cavity concave from the first surface. The circuit substrate includes a dielectric material and a metal floor plate embedded in the dielectric material and located below the cavity. A location of the metal floor plate corresponds to a location of the cavity. The metal floor plate is electrically floating and isolated by the dielectric material. The semiconductor die is disposed in the cavity and electrically connected with the circuit substrate. The filling material is disposed between the semiconductor die and the circuit substrate. The filling material fills the cavity and encapsulates the semiconductor die to attach the semiconductor die and the circuit substrate.
    Type: Application
    Filed: August 2, 2023
    Publication date: November 30, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Liang Lin, Po-Yao Chuang, Te-Chi Wong, Shuo-Mao Chen, Shin-Puu Jeng
  • Publication number: 20230387172
    Abstract: The present disclosure is directed to anchor structures and methods for forming anchor structures such that planarization and wafer bonding can be uniform. Anchor structures can include anchor layers formed on a dielectric layer surface and anchor pads formed in the anchor layer and on the dielectric layer surface. The anchor layer material can be selected such that the planarization selectivity of the anchor layer, anchor pads, and the interconnection material can be substantially the same as one another. Anchor pads can provide uniform density of structures that have the same or similar material.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Yu Wei, Cheng-Yuan Li, Hsin-Chi Chen, Kuo-Cheng Lee, Hsun-Ying Huang, Yen-Liang Lin
  • Publication number: 20230383442
    Abstract: The present disclosure discloses a one-step chitosan fiber spinning device, including a stand; a stock solution tank, a coagulating bath, a plasticizing stretch bath, a water washing basin, a drying mechanism and a winding mechanism; a front end of a water conveying pipe is fixed on an inner wall of a front end of the water washing basin; a bearing at a front end of a mounting sleeve is mounted on the inner wall of the front end of the water washing basin; activity slots are formed in outer ends of mounting plates; a control head is fixed at an outer end of a control head seat; one end of a two-shaft motor is connected with a gear; a water tank is mounted at a top of a rear end of the water conveying pipe.
    Type: Application
    Filed: June 5, 2023
    Publication date: November 30, 2023
    Inventors: Liang Lin, Xinxu Yan, Rui Han, Peng Guo
  • Publication number: 20230386988
    Abstract: Semiconductor packages and methods of fabricating semiconductor packages include bonding structures on a surface of an interposer having non-uniform height dimensions in different regions of the interposer. A plurality of solder connections may contact the pillars and electrically connect the respective pillars of the interposer to corresponding bonding structures on a package substrate. The variation in the heights of the pillars in different regions of the interposer may compensate for warping of the interposer and improve the reliability of the electrical connections between the interposer and the package substrate.
    Type: Application
    Filed: May 31, 2022
    Publication date: November 30, 2023
    Inventors: Li-Ling Liao, Ming-Chih Yew, Po-Chen Lai, Chia-Kuei Hsu, Shin-Puu Jeng, Meng-Liang Lin
  • Publication number: 20230378039
    Abstract: Some implementations herein describe a semiconductor package. The semiconductor package, which may correspond to a high-performance computing semiconductor package, includes an interposer. The interposer includes tapered interconnect structures formed using a laser plug process. The tapered interconnect structures may include a length that is lesser relative to a length of the column-shaped interconnect structures formed using a through-silicon via process. Such a length reduces a thickness of the interposer and reduces a length of electrical connections through the interposer. In this way, a signal integrity may be increased and parasitics of the semiconductor package including the tapered interconnect structures may be reduced to increase a performance of the semiconductor package. Additionally, the reduced thickness of the interposer may reduce an overall thickness of the semiconductor package to save space consumed by the semiconductor package in a computing system.
    Type: Application
    Filed: May 23, 2022
    Publication date: November 23, 2023
    Inventors: Hsien-Wei CHEN, Meng-Liang LIN, Li-Ling LIAO, Shin-Puu JENG
  • Publication number: 20230374482
    Abstract: The present disclosure provides for endonuclease enzymes having distinguishing domain features, as well as methods of using such enzymes or variants thereof.
    Type: Application
    Filed: May 31, 2023
    Publication date: November 23, 2023
    Inventors: Brian C. THOMAS, Alan BROOKS, Cristina BUTTERFIELD, Christopher BROWN, Cindy CASTELLE, Jyun-Liang LIN
  • Publication number: 20230378205
    Abstract: A semiconductor device includes a plurality of isolation structures, wherein each isolation structure of the plurality of isolation structures is spaced from an adjacent isolation structure of the plurality of isolation structures. The semiconductor device further includes a gate structure. The gate structure includes a first sidewall and a second sidewall angled with respect to the first sidewall. The gate structure further includes a first surface extending between the first sidewall and the second sidewall, wherein a dimension of the gate structure in a first direction is less than a dimension of each of the plurality of isolation structures in the first direction.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Inventors: Chia-Yu WEI, Fu-Cheng CHANG, Hsin-Chi CHEN, Ching-Hung KAO, Chia-Pin CHENG, Kuo-Cheng LEE, Hsun-Ying HUANG, Yen-Liang LIN
  • Publication number: 20230378116
    Abstract: Redistribution layers of integrated circuits include one or more arrays of conductive contacts that are configured and arranged to allow a bonding wave to displace air between the redistribution layers during bonding. This configuration and arrangement of the one or more arrays minimize discontinuities, such as pockets of air to provide an example, between the redistribution layers during the bonding.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Inventors: Cheng-Yuan Li, Kuo-Cheng Lee, Yun-Wei Cheng, Yen-Liang Lin
  • Patent number: 11824007
    Abstract: A semiconductor package is fabricated by attaching a first component to a second component. The first component is assembled by forming a first redistribution structure over a substrate. A through via is then formed over the first redistribution structure, and a die is attached to the first redistribution structure active-side down. The second component includes a second redistribution structure, which is then attached to the through via. A molding compound is deposited between the first redistribution structure and the second redistribution structure and further around the sides of the second component.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Hao Tsai, Po-Yao Chuang, Meng-Liang Lin, Yi-Wen Wu, Shin-Puu Jeng, Techi Wong
  • Publication number: 20230369062
    Abstract: In a method of forming a groove pattern extending in a first axis in an underlying layer over a semiconductor substrate, a first opening is formed in the underlying layer, and the first opening is extended in the first axis by directional etching to form the groove pattern.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 16, 2023
    Inventors: Ru-Gun LIU, Chih-Ming LAI, Wei-Liang LIN, Yung-Sung YEN, Ken-Hsien HSIEH, Chin-Hsiang LIN
  • Publication number: 20230369047
    Abstract: The present disclosure provides a method for semiconductor manufacturing in accordance with some embodiments. The method includes forming a hard mask layer over a substrate, the substrate having one or more regions to receive a treatment process, forming a resist layer over the hard mask layer, patterning the resist layer to form a plurality of openings in the resist layer, each of the openings free of concave corners, performing an opening expanding process to enlarge at least one of the openings in the resist layer, transferring the openings in the resist layer to the hard mask layer, and performing the treatment process to the one or more regions in the substrate through the openings in the hard mask layer.
    Type: Application
    Filed: July 30, 2023
    Publication date: November 16, 2023
    Inventors: Yu-Tien Shen, Ya-Wen Yeh, Wei-Liang Lin, Ya Hui Chang, Yung-Sung Yen, Wei-Hao Wu, Li-Te Lin, Ru-Gun Liu, Kuei-Shun Chen
  • Patent number: 11817472
    Abstract: The present disclosure is directed to anchor structures and methods for forming anchor structures such that planarization and wafer bonding can be uniform. Anchor structures can include anchor layers formed on a dielectric layer surface and anchor pads formed in the anchor layer and on the dielectric layer surface. The anchor layer material can be selected such that the planarization selectivity of the anchor layer, anchor pads, and the interconnection material can be substantially the same as one another. Anchor pads can provide uniform density of structures that have the same or similar material.
    Type: Grant
    Filed: October 18, 2021
    Date of Patent: November 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Yu Wei, Cheng-Yuan Li, Hsin-Chi Chen, Kuo-Cheng Lee, Hsun-Ying Huang, Yen-Liang Lin
  • Publication number: 20230361015
    Abstract: A method includes forming an interposer, which includes forming a rigid dielectric layer, and removing portions of the rigid dielectric layer. The method further includes bonding a package component to an interconnect structure, and bonding the interposer to the interconnect structure. A spacer in the interposer has a bottom surface contacting a top surface of the package component, and the spacer includes a feature selected from the group consisting of a metal feature, the rigid dielectric layer, and combinations thereof. A die-saw is performed on the interconnect structure.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 9, 2023
    Inventors: Po-Hao Tsai, Techi Wong, Meng-Wei Chou, Meng-Liang Lin, Po-Yao Chuang, Shin-Puu Jeng
  • Publication number: 20230361016
    Abstract: A semiconductor package, which may correspond to a high-performance computing package, includes an interposer over a substrate. A spacer structure is mounted to a bottom surface of the interposer. The spacer structure is configured to maintain a clearance between a bottom surface of an integrated circuit die mounted to the bottom surface of the interposer and a top surface of the substrate to reduce a likelihood of an interference or collision between the integrated circuit die and the substrate. In this way, a likelihood of damage to the integrated circuit die and/or the substrate is reduced. Additionally, a robustness of an electrical connection between the integrated circuit die and the interposer may increase to improve a reliability and/or a yield of the semiconductor package including the spacer structure.
    Type: Application
    Filed: May 6, 2022
    Publication date: November 9, 2023
    Inventors: Hsien-Wei CHEN, Meng-Liang LIN, Shin-Puu JENG
  • Publication number: 20230361045
    Abstract: A semiconductor package, which may correspond to a high-performance computing package, includes an integrated circuit die electrically and/or mechanically connected to a top surface of an interposer and a plurality of connection structures electrically and/or mechanically connected to a bottom surface of the interposer. The top surface of the interposer includes a set of test contact structures (e.g., one or more test bumps) that are electrically connected to the integrated circuit die through traces of the interposer. The set of test structures may be contacted by a probe needle to test a quality and/or a reliability of the integrated circuit die, as well as verify that traces of the interposer are functional. The set of test contact structures allows the integrated circuit die and traces of the interposer to be tested without probing the connection structures.
    Type: Application
    Filed: May 3, 2022
    Publication date: November 9, 2023
    Inventors: Hsien-Wei CHEN, Meng-Liang LIN, Shin-Puu JENG
  • Publication number: 20230350251
    Abstract: A transistor substrate is provided. The transistor substrate includes a first electrode and a second electrode. The first electrode has a slit. The slit includes a curved portion. The first electrode is used for receiving a common voltage signal. The second electrode overlaps the first electrode. The second electrode and the curved portion of the slit have an overlapping region, and an area of the overlapping region is 0.2 times to 0.8 times an area of the curved portion.
    Type: Application
    Filed: June 16, 2023
    Publication date: November 2, 2023
    Inventors: Yung-Shun YANG, Chun-Liang LIN, Yi-Ching CHEN, Nai-Fang HSU
  • Publication number: 20230348876
    Abstract: The present disclosure provides for endonuclease enzymes having distinguishing domain features, as well as methods of using such enzymes or variants thereof.
    Type: Application
    Filed: March 7, 2023
    Publication date: November 2, 2023
    Inventors: Jyun-Liang LIN, Alan BROOKS, Cristina BUTTERFIELD, Christopher BROWN, Cindy CASTELLE, Brian C. Thomas
  • Publication number: 20230348877
    Abstract: The present disclosure provides for endonuclease enzymes having distinguishing domain features, as well as methods of using such enzymes or variants thereof.
    Type: Application
    Filed: March 8, 2023
    Publication date: November 2, 2023
    Inventors: Jyun-Liang LIN, Alan BROOKS, Cristina BUTTERFIELD, Christopher BROWN, Cindy CASTELLE, Brian C. Thomas
  • Publication number: 20230343765
    Abstract: A method includes forming a first package component, which includes an interposer, and a first die bonded to a first side of the interposer. A second die is bonded to a second side of the interposer. The second die includes a substrate, and a through-via penetrating through the substrate. The method further includes bonding a second package component to the first package component through a first plurality of solder regions. The first package component is further electrically connected to the second package component through the through-via in the second die. The second die is further bonded to the second package component through a second plurality of solder regions.
    Type: Application
    Filed: June 1, 2022
    Publication date: October 26, 2023
    Inventors: Shin-Puu Jeng, Hsien-Wei Chen, Meng-Liang Lin, Ying-Ju Chen, Shuo-Mao Chen