Patents by Inventor Licai Jiang

Licai Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11867646
    Abstract: Provided is a total reflection X-ray fluorescence spectrometer which has high analysis sensitivity and analysis speed. The total reflection X-ray fluorescence spectrometer includes: an X-ray source that has an electron beam focal point having an effective width in a direction parallel to a surface of a sample, and orthogonal to an X-ray irradiation direction, that is larger than a dimension in the irradiation direction; a reflective optic that has an effective width in the orthogonal direction that is larger than that of the electron beam focal point, and has a curved surface in the irradiation direction; and a plurality of detectors that are arranged in a row in the orthogonal direction, and are configured to measure intensities of fluorescent X-rays emitted from the sample irradiated with primary X-rays focused by the reflective optic.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: January 9, 2024
    Assignee: RIGAKU CORPORATION
    Inventors: Makoto Kambe, Kazuhiko Omote, Toshifumi Higuchi, Tsutomu Tada, Hajime Fujimura, Masahiro Nonoguchi, Licai Jiang, Boris Verman, Yuriy Platonov
  • Publication number: 20230400423
    Abstract: Provided is a total reflection X-ray fluorescence spectrometer which has high analysis sensitivity and analysis speed. The total reflection X-ray fluorescence spectrometer includes: an X-ray source that has an electron beam focal point having an effective width in a direction parallel to a surface of a sample, and orthogonal to an X-ray irradiation direction, that is larger than a dimension in the irradiation direction; a reflective optic that has an effective width in the orthogonal direction that is larger than that of the electron beam focal point, and has a curved surface in the irradiation direction; and a plurality of detectors that are arranged in a row in the orthogonal direction, and are configured to measure intensities of fluorescent X-rays emitted from the sample irradiated with primary X-rays focused by the reflective optic.
    Type: Application
    Filed: November 1, 2021
    Publication date: December 14, 2023
    Inventors: Makoto KAMBE, Kazuhiko OMOTE, Toshifumi HIGUCHI, Tsutomu TADA, Hajime FUJIMURA, Masahiro NONOGUCHI, Licai JIANG, Boris VERMAN, Yuriy PLATONOV
  • Patent number: 10876978
    Abstract: In an X-ray inspection device according to the present invention, an X-ray irradiation unit 40 includes a first X-ray optical element 42 for focusing characteristic X-rays in a vertical direction, and a second X-ray optical element 43 for focusing the characteristic X-rays in a horizontal direction. The first X-ray optical element 42 is constituted by a crystal material having high crystallinity. The second X-ray optical element includes a multilayer mirror.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: December 29, 2020
    Assignee: RIGAKU CORPORATION
    Inventors: Kiyoshi Ogata, Kazuhiko Omote, Sei Yoshihara, Yoshiyasu Ito, Hiroshi Motono, Hideaki Takahashi, Takao Kinefuchi, Akifusa Higuchi, Shiro Umegaki, Shigematsu Asano, Ryotaro Yamaguchi, Katsutaka Horada, Makoto Kambe, Licai Jiang, Boris Verman
  • Patent number: 10854348
    Abstract: An X-ray generator includes: a line X-ray source; a multilayer film mirror; and a side-by-side reflecting mirror including two concave mirrors joined together so as to share a join line. A cross section of a reflecting surface of the multilayer film mirror has a parabolic shape, and a focus of the parabolic shape is located at the line X-ray source. Cross sections of reflecting surfaces of the two concave mirrors of the side-by-side reflecting mirror each have a parabolic shape, and each of focuses of the parabolic shapes is located on a side opposite to the multilayer film mirror. An extended line of the join line of the side-by-side reflecting mirror passes through the multilayer film mirror and the line X-ray source as viewed in a plan view.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: December 1, 2020
    Assignee: RIGAKU CORPORATION
    Inventors: Kazuhiko Omote, Takeshi Osakabe, Tetsuya Ozawa, Licai Jiang, Boris Verman
  • Patent number: 10436723
    Abstract: Only X-rays having a specific wavelength, selected from a group of focusing X-rays diffracted from a sample, are reflected from a monochromator based on a Bragg's condition, passed through a receiving slit and detected by an X-ray detector. The monochromator is configured to be freely removable, and arranged between the sample and a focal point at which the wavelength-selected focusing X-rays diffracted from the sample are directly focused. At this time, the monochromator is moved so as to position the monochromator as close to the focal point as possible. The monochromator comprises a multilayer mirror having an internal interplanar spacing, wherein said internal interplanar spacing varies continuously from one end of the monochromator to the other end.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: October 8, 2019
    Assignee: RIGAKU CORPORATION
    Inventors: Takeshi Osakabe, Tetsuya Ozawa, Kazuhiko Omote, Licai Jiang, Boris Verman, Yuriy Platonov
  • Patent number: 10429325
    Abstract: Provided is an X-ray small angle optical system, which easily achieves a desired angular resolution, including: an X-ray source having a microfocus; a multilayer mirror having an elliptical reflection surface, and being configured to collect X-rays emitted from the X-ray source and to irradiate a sample; and an X-ray detector configured to detect scattered X-rays generated from the sample, in which the elliptical reflection surface of the multilayer mirror has a focal point A and a focal point B, in which the X-ray source is arranged such that the microfocus includes the focal point A, and in which the X-ray detector is arranged on the multilayer mirror side of the focal point B.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: October 1, 2019
    Assignee: RIGAKU CORPORATION
    Inventors: Kazuki Ito, Kazuhiko Omote, Licai Jiang
  • Publication number: 20190272929
    Abstract: An X-ray generator includes: a line X-ray source; a multilayer film mirror; and a side-by-side reflecting mirror including two concave mirrors joined together so as to share a join line. A cross section of a reflecting surface of the multilayer film mirror has a parabolic shape, and a focus of the parabolic shape is located at the line X-ray source. Cross sections of reflecting surfaces of the two concave mirrors of the side-by-side reflecting mirror each have a parabolic shape, and each of focuses of the parabolic shapes is located on a side opposite to the multilayer film mirror. An extended line of the join line of the side-by-side reflecting mirror passes through the multilayer film mirror and the line X-ray source as viewed in a plan view.
    Type: Application
    Filed: February 25, 2019
    Publication date: September 5, 2019
    Inventors: Kazuhiko Omote, Takeshi Osakabe, Tetsuya Ozawa, Licai Jiang, Boris Verman
  • Publication number: 20190227005
    Abstract: In an X-ray inspection device according to the present invention, an X-ray irradiation unit 40 includes a first X-ray optical element 42 for focusing characteristic X-rays in a vertical direction, and a second X-ray optical element 43 for focusing the characteristic X-rays in a horizontal direction. The first X-ray optical element 42 is constituted by a crystal material having high crystallinity. The second X-ray optical element includes a multilayer mirror.
    Type: Application
    Filed: July 12, 2017
    Publication date: July 25, 2019
    Inventors: Kiyoshi Ogata, Kazuhiko Omote, Sei Yoshihara, Yoshiyasu Ito, Hiroshi Motono, Hideaki Takahashi, Takao Kinefuchi, Akifusa Higuchi, Shiro Umegaki, Shigematsu Asano, Ryotaro Yamaguchi, Katsutaka Horada, Makoto Kambe, Licai Jiang, Boris Verman
  • Publication number: 20170191950
    Abstract: Only X-rays having a specific wavelength out of focusing X-rays 2 diffracted from a sample S is reflected from a monochromator 60 based on a Bragg's condition, passed through a receiving slit 30 and detected by an X-ray detector 20. The monochromator 60 is configured to be freely removable, and arranged between the sample S and a focal point 2a at which the focusing X-rays 2 diffracted from the sample S are directly focused. At this time, the monochromator 60 is approached to the focal point 2a as closely as possible. The monochromator 60 comprises a multilayer mirror having an internal interplanar spacing which varies continuously from one end to the other end.
    Type: Application
    Filed: January 14, 2015
    Publication date: July 6, 2017
    Applicant: RIGAKU CORPORATION
    Inventors: Takeshi OSAKABE, Tetsuya OZAWA, Kazuhiko OMOTE, Licai JIANG, Boris VERMAN, Yuriy PLATONOV
  • Publication number: 20170074809
    Abstract: Provided is an X-ray small angle optical system, which easily achieves a desired angular resolution, including: an X-ray source having a microfocus; a multilayer mirror having an elliptical reflection surface, and being configured to collect X-rays emitted from the X-ray source and to irradiate a sample; and an X-ray detector configured to detect scattered X-rays generated from the sample, in which the elliptical reflection surface of the multilayer mirror has a focal point A and a focal point B, in which the X-ray source is arranged such that the microfocus includes the focal point A, and in which the X-ray detector is arranged on the multilayer mirror side of the focal point B.
    Type: Application
    Filed: September 8, 2016
    Publication date: March 16, 2017
    Inventors: Kazuki ITO, Kazuhiko OMOTE, Licai Jiang
  • Patent number: 9575017
    Abstract: An assembly for Kratky collimator is provided. The assembly may be used for a small angle x-ray camera or system requiring such filtering. The assembly may include a first block with a first working surface and a second block with a second working surface. The first and second blocks may be aligned with the first working surface pointing an opposite direction of the second working surface and the first working surface being aligned in a common plane with the second working surface. In some implementations, the first block may comprise a crystal material. In some implementations, an extension may of the first block may be configured position a beamstop.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: February 21, 2017
    Assignee: Rigaku Innovative Technologies, Inc.
    Inventors: Licai Jiang, Paul Ulrich Pennartz
  • Patent number: 9336917
    Abstract: An X-ray apparatus that creates a virtual source having a narrow energy bandwidth and enables a high-resolution X-ray diffraction measurement; a method of using the same; and an X-ray irradiation method are provided. An X-ray apparatus 100 includes a monochromator 105 that focuses a divergent X-ray beam while dispersing it and a selection part 107 that is installed in a condensing position of the condensed X-ray beam for selecting an X-ray beam having a wavelength in a specific range, allowing it to pass through, and creating a virtual source. With this arrangement, it is possible to create a virtual source having a narrow energy bandwidth at a focal point 110 and by means of the virtual source a high-resolution X-ray diffraction measurement is available. By using the X-ray apparatus 100, it is possible to sufficiently separate an X-ray beam having such an extremely narrow energy bandwidth as, for example, K?1 ray from K?2 ray.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: May 10, 2016
    Assignee: RIGAKU CORPORATION
    Inventors: Tetsuya Ozawa, Ryuji Matsuo, Licai Jiang, Boris Verman, Kazuhiko Omote
  • Patent number: 9159524
    Abstract: The X-ray generating apparatus 100 applies an electron beam e1 onto a target 150 to generate X-rays x1, and includes a permanent magnet lens 120 configured to focus the electron beam e1, a correction coil 130 provided on a side of the electron beam e1 with respect to the permanent magnet lens 120 and configured to correct a focus position formed by the permanent magnet lens 120 in a traveling direction of the electron beam e1, and a target 150 onto which the focused electron beam is applied. Accordingly, the apparatus configuration can be extremely compact and lightweight in comparison with general apparatuses. Furthermore, by the correction coil 130, the intensity of the magnetic field can be finely adjusted and the focus position in the traveling direction of the electron beam e1 can be finely adjusted.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: October 13, 2015
    Assignee: RIGAKU CORPORATION
    Inventors: Martin Horvarth, Jiri Marsik, Ladislav Pina, Vaclav Jelinek, Naohisa Osaka, Kazuhiko Omote, Makoto Kambe, Licai Jiang, Bonglea Kim
  • Publication number: 20150241366
    Abstract: An assembly for Kratky collimator is provided. The assembly may be used for a small angle x-ray camera or system requiring such filtering. The assembly may include a first block with a first working surface and a second block with a second working surface. The first and second blocks may be aligned with the first working surface pointing an opposite direction of the second working surface and the first working surface being aligned in a common plane with the second working surface. In some implementations, the first block may comprise a crystal material. In some implementations, an extension may of the first block may be configured position a beamstop.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 27, 2015
    Inventors: Licai Jiang, Paul Ulrich Pennartz
  • Patent number: 9031203
    Abstract: A system for analyzing a sample is provided. The system includes an optical system capable of providing a one-dimensional beam and a two-dimensional beam. The system may include a beam selection device to select between providing a one-dimensional x-ray beam to the sample in a one-dimensional operation mode and a two-dimensional x-ray beam to the sample in a two-dimensional operation mode.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: May 12, 2015
    Assignee: Rigaku Innovative Technologies, Inc.
    Inventors: Licai Jiang, Boris Verman
  • Patent number: 9014335
    Abstract: A system for analyzing a sample is provided. The system includes a beam selection device for selecting between a one-dimensional operation mode for providing a one-dimensional x-ray beam to the sample and a two-dimensional operation mode for providing a two-dimensional x-ray beam to the sample.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: April 21, 2015
    Assignee: Rigaku Innovative Technologies, Inc.
    Inventor: Licai Jiang
  • Patent number: 8767918
    Abstract: A X-ray scattering measurement device and measurement method can measure, with high resolution, the intensity of X-rays which have undergone small-angle scattering and diffraction with reflection geometry and can easily and accurately measure a microstructure on the surface of a sample. The X-ray scattering measurement device is suitable for microstructural measurement on the surface of a sample includes an X-ray source that generates an X-ray; a first mirror and a second mirror that continuously reflect the generated X-ray; a sample stage that supports the sample; and a two-dimensional detector that detects the X-ray scattered on the surface of the sample. The first mirror focuses the generated X-ray onto the two-dimensional detector within a plane parallel to the surface of the sample, and the second mirror focuses the X-ray reflected by the first mirror onto the surface of the sample within a plane perpendicular to the surface of the sample.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: July 1, 2014
    Assignee: Rigaku Corporation
    Inventors: Kazuhiko Omote, Boris Verman, Licai Jiang
  • Publication number: 20140105367
    Abstract: The X-ray generating apparatus 100 applies an electron beam e1 onto a target 150 to generate X-rays x1, and includes a permanent magnet lens 120 configured to focus the electron beam e1, a correction coil 130 provided on a side of the electron beam e1 with respect to the permanent magnet lens 120 and configured to correct a focus position formed by the permanent magnet lens 120 in a traveling direction of the electron beam e1, and a target 150 onto which the focused electron beam is applied. Accordingly, the apparatus configuration can be extremely compact and lightweight in comparison with general apparatuses. Furthermore, by the correction coil 130, the intensity of the magnetic field can be finely adjusted and the focus position in the traveling direction of the electron beam e1 can be finely adjusted.
    Type: Application
    Filed: October 16, 2013
    Publication date: April 17, 2014
    Applicant: RIGAKU CORPORATION
    Inventors: Martin HORVARTH, Jiri MARSIK, Ladislav PINA, Vaclav JELINEK, Naohisa OSAKA, Kazuhiko OMOTE, Makoto KAMBE, Licai JIANG, Bonglea KIM
  • Publication number: 20130329861
    Abstract: A system for analyzing a sample is provided. The system includes an optical system capable of providing a one-dimensional beam and a two-dimensional beam. The system may include a beam selection device to select between providing a one-dimensional x-ray beam to the sample in a one-dimensional operation mode and a two-dimensional x-ray beam to the sample in a two-dimensional operation mode.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 12, 2013
    Inventors: Licai Jiang, Boris Verman
  • Publication number: 20130329858
    Abstract: A system for analyzing a sample is provided. The system includes a beam selection device for selecting between a one-dimensional operation mode for providing a one-dimensional x-ray beam to the sample and a two-dimensional operation mode for providing a two-dimensional x-ray beam to the sample.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 12, 2013
    Inventor: Licai Jiang