Patents by Inventor Lijie HUANG
Lijie HUANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9354197Abstract: The design and manufacture method of an oxygen concentration sensor made with silicon micromachining (a.k.a. MEMS, Micro Electro Mechanical Systems) process for applications of oxygen measurement with fast response time and low power consumption is disclosed in the present invention. The said silicon oxygen concentration sensor operates with an yttrium stabilized zirconia oxide amperometric cell supported on a membrane made of silicon nitride with a heat isolation cavity underneath or a silicon nitride membrane with silicon plug for mechanical strength enforcement.Type: GrantFiled: April 25, 2013Date of Patent: May 31, 2016Assignee: Wisenstech Ltd.Inventors: Liji Huang, Chih-Chang Chen
-
Patent number: 9109935Abstract: This invention is related to an apparatus which incorporates a microfabricated silicon mass flow sensor to measure city gas flow rate in a medium pressure range for utility industry which is dominated by conventional mechanical meters such as turbine and rotary meters. The microfabricated mass flow sensor is so called micro-electro-mechanical systems (a.k.a. MEMS) device. Due to the small feature size of micro scale for MEMS mass flow sensor, the invented apparatus includes many advantages such as low power consumption, compact package, high reliability and extended dynamic measurement range. This apparatus is also provided with a stable flow conditioning to achieve a desired dynamic range capability. Furthermore, because of the high accuracy characteristic, the apparatus in this invention could be applied for custody transfer or tariff in utility industry as well.Type: GrantFiled: October 28, 2012Date of Patent: August 18, 2015Assignee: M-Tech Instrument Corporation (holding) LimitedInventors: Xiangyou Yang, Yong Feng, Sugang Jiang, Chih-Chang Chen, Liji Huang
-
Patent number: 8994552Abstract: An all-electronic utility gas meter using with micromachined (a.k.a. MEMS Micro Electro Mechanical Systems) silicon sensor to measure gas metrology data for custody transfer or tariff in city gas metering application is disclosed in the present invention. The meter has two separate metrology units. One of the units is located in the main flow channel with the insertion probing configuration while the other is configured as a bypass unit assembly with the main metrology unit. The bypass metrology unit can perform independent metrology tasks and can be exchanged onsite during service, maintenance or repair without dismantle the meter from the service pipeline. The bypass metrology unit also can be used to compare the measured data from time to time and performance self-diagnosis that shall help the performance and data authentication during the meter field service. Both of the units can be powered by battery or external sources.Type: GrantFiled: October 28, 2012Date of Patent: March 31, 2015Assignee: M-tech Instrument Corporation (Holding) LimitedInventors: Changming Jiang, Yong Feng, Sugang Jiang, Chih-Chang Chen, Liji Huang
-
Patent number: 8950253Abstract: A silicon mass flow sensor manufacture process that enables the backside contacts and eliminates the conventional front side wire binding process, and the assembly of such a mass flow sensor is disclosed in the present invention. The achieved assembly enhances the reliability by eliminating the binding wire exposure to the flow medium that may lead to detrimental failure due to the wire shortage or breakage while the miniature footprint could be maintained. The assembly further reduces flow instability from the flow sensor package including the bump of wire sealing. The invented mass flow sensor assembly can be a flow sensor module if the supporting sensor carrier is pre-designed with the control electronics. Without the control electronics, the said mass flow sensor assembly is easy to install into desired flow channels and connect to the external control electronics.Type: GrantFiled: January 8, 2013Date of Patent: February 10, 2015Assignee: M-Tech Instrument Corporation (Holding) LimitedInventors: Liji Huang, Chih-Chang Chen
-
Patent number: 8943888Abstract: This invention is related to a microfabricated microelectromechanical systems (a.k.a. MEMS) silicon thermal mass flow sensor integrated with a micromachined thermopile temperature sensor as a flow inception detection sensor. The micromachined thermopile sensor is used to detect the inception of mass flow and therefore to trigger the operation of mass flow sensor from its hibernating mode. By this method, the battery-operated flow speed measuring apparatus can save great deal of electricity and significantly extend the life span of battery. A new design of micromachined thermopile sensor with serpentine shape is used to reduce the complexity of microfabrication process and to increase the flexibility and options for material selection. In order to enhance the sensitivity of the thermopile temperature sensor, a method to maximize the quantity of the junctions is provided as well.Type: GrantFiled: January 9, 2013Date of Patent: February 3, 2015Assignee: M-Tech Instrument Corporation (Holding) LimitedInventors: Liji Huang, Chih-Chang Chen
-
Publication number: 20140318960Abstract: The design and manufacture method of an oxygen concentration sensor made with silicon micromachining (a.k.a. MEMS, Micro Electro Mechanical Systems) process for applications of oxygen measurement with fast response time and low power consumption is disclosed in the present invention. The said silicon oxygen concentration sensor operates with an yttrium stabilized zirconia oxide amperometric cell supported on a membrane made of silicon nitride with a heat isolation cavity underneath or a silicon nitride membrane with silicon plug for mechanical strength enforcement.Type: ApplicationFiled: April 25, 2013Publication date: October 30, 2014Applicant: WISENSTECH INC.Inventors: Liji Huang, Chih-Chang Chen
-
Publication number: 20140283595Abstract: The design and manufacture method of a silicon mass flow sensor made with silicon Micromachining MEMS, Micro Electro Mechanical Systems) process for applications of gas flow measurement with highly humidified or liquid vapors is disclosed in the present invention. The said silicon mass flow sensor operates with an embedded heater and an adjacent control temperature sensor beneath the integrated calorimetric and thermal dissipative sensing thermistors. When the condensation takes place at the surface of the said silicon mass flow sensor, the embedded heater shall be turned on to elevate the temperature of the supporting membrane or substrate for the sensing thermistors. The elevated temperature shall be adjusted to above the vaporization temperature with the feedback data of the adjacent temperature sensor such that the surface condensation due to the presence of the liquid vapors in a gas flow can be effectively eliminated.Type: ApplicationFiled: March 19, 2013Publication date: September 25, 2014Applicant: WISENSTECH INC.Inventors: Liji Huang, Chih-Chang Chen
-
Publication number: 20140268440Abstract: This invention relates to a micromachined ESD protection device and its microfabrication method for light emitting diode (LEDs) chips. The LEDs is coupled to the ESD protection device in a shunt connection to absorb and eliminate the electrostatic charges induced by human contact or other voltage spike sources. The ESD protection circuit can prevent the LED from burning down and extend its lifespan. By using a thick polyimide layer as the dielectric film for capacitors in the micromachined ESD protection device at the current invention has the advantages with high breakdown voltage compared to other ESD protection circuits. And furthermore, the device in the current invention is easy for mass production with low manufacturing cost. Another embodiment of the present invention is that the multiple-array arrangement in current micromachined ESD protection device could greatly enhance the liability due to multiple-protection and thus to provide the possibility of multiple-times usage.Type: ApplicationFiled: March 12, 2013Publication date: September 18, 2014Applicant: Wisenstech Inc.Inventors: Chih-Chang Chen, Liji Huang
-
Patent number: 8794082Abstract: An apparatus comprising a micromachined (a.k.a. MEMS, Micro Electro Mechanical Systems) silicon flow sensor, a flow channel package, and a driving circuitry, which operates in a working principle of thermal time-of-flight (TOF) to measure gas or liquid flow speed, is disclosed in the present invention. The micromachining technique for fabricating this MEMS time-of-flight silicon thermal flow sensor can greatly reduce the sensor fabrication cost by batch production. This microfabrication process for silicon time-of-flight thermal flow sensors provides merits of small feature size, low power consumption, and high accuracy compared to conventional manufacturing methods. Thermal time-of-flight technology in principle can provide accurate flow speed measurements for gases regardless of its gas compositions. In addition, the present invention further discloses the package design and driving circuitry which is utilized by the correlated working principle.Type: GrantFiled: February 25, 2011Date of Patent: August 5, 2014Assignee: Siargo Ltd.Inventors: Liji Huang, Xiaozhong Wu, Yahong Yao, Chih-Chang Chen
-
Publication number: 20140190251Abstract: This invention is related to a microfabricated microelectromechanical systems (a.k.a. MEMS) silicon thermal mass flow sensor integrated with a micromachined thermopile temperature sensor as a flow inception detection sensor. The micromachined thermopile sensor is used to detect the inception of mass flow and therefore to trigger the operation of mass flow sensor from its hibernating mode. By this method, the battery-operated flow speed measuring apparatus can save great deal of electricity and significantly extend the life span of battery. A new design of micromachined thermopile sensor with serpentine shape is used to reduce the complexity of microfabrication process and to increase the flexibility and options for material selection. In order to enhance the sensitivity of the thermopile temperature sensor, a method to maximize the quantity of the junctions is provided as well.Type: ApplicationFiled: January 9, 2013Publication date: July 10, 2014Applicant: M-Tech Instrument Corporation (Holding) LimitedInventors: Liji Huang, Chih-Chang Chen
-
Publication number: 20140190252Abstract: A silicon mass flow sensor manufacture process that enables the backside contacts and eliminates the conventional front side wire binding process, and the assembly of such a mass flow sensor is disclosed in the present invention. The achieved assembly enhances the reliability by eliminating the binding wire exposure to the flow medium that may lead to detrimental failure due to the wire shortage or breakage while the miniature footprint could be maintained. The assembly further reduces flow instability from the flow sensor package including the bump of wire sealing. The invented mass flow sensor assembly can be a flow sensor module if the supporting sensor carrier is pre-designed with the control electronics. Without the control electronics, the said mass flow sensor assembly is easy to install into desired flow channels and connect to the external control electronics.Type: ApplicationFiled: January 8, 2013Publication date: July 10, 2014Applicant: M-TECH INSTRUMENT CORPORATION (HOLDING) LIMITEDInventors: Liji Huang, Chih-Chang Chen
-
Publication number: 20140118161Abstract: An all-electronic utility gas meter using with micromachined (a.k.a. MEMS Micro Electro Mechanical Systems) silicon sensor to measure gas metrology data for custody transfer or tariff in city gas metering application is disclosed in the present invention. The meter has two separate metrology units. One of the units is located in the main flow channel with the insertion probing configuration while the other is configured as a bypass unit assembly with the main metrology unit. The bypass metrology unit can perform independent metrology tasks and can be exchanged onsite during service, maintenance or repair without dismantle the meter from the service pipeline. The bypass metrology unit also can be used to compare the measured data from time to time and performance self-diagnosis that shall help the performance and data authentication during the meter field service. Both of the units can be powered by battery or external sources.Type: ApplicationFiled: October 28, 2012Publication date: May 1, 2014Applicant: M-TECH INSTRUMENT CORPORATION (HOLDING) LIMITEDInventors: Changming Jiang, Yong Feng, Sugang Jiang, Chih-Chang Chen, Liji Huang
-
Publication number: 20140116129Abstract: This invention is related to an apparatus which incorporates a microfabricated silicon mass flow sensor to measure city gas flow rate in a medium pressure range for utility industry which is dominated by conventional mechanical meters such as turbine and rotary meters. The microfabricated mass flow sensor is so called micro-electromechanical systems (a.k.a. MEMS) device. Due to the small feature size of micro scale for MEMS mass flow sensor, the invented apparatus includes many advantages such as low power consumption, compact package, high reliability and extended dynamic measurement range. This apparatus is also provided with a stable flow conditioning to achieve a desired dynamic range capability. Furthermore, because of the high accuracy characteristic, the apparatus in this invention could be applied tot custody transfer or tariff in utility industry as well.Type: ApplicationFiled: October 28, 2012Publication date: May 1, 2014Applicant: M-TECH INSTRUMENT CORPORATION (HOLDING) LIMITEDInventors: Xiangyou Yang, Yong Feng, Sugang Jiang, Chih-Chang Chen, Liji Huang
-
Patent number: 8644693Abstract: An apparatus integrated with micromachined (a.k.a. MEMS, Micro Electro Mechanical Systems) silicon thermal sensor as a proximity switch sensor in air/oil Lubricators is disclosed in the present invention. The present invention relates to mass flow sensing and measurement for both gas and liquid phase and relates to air/oil lubrication process for multi-point lubrication machine. The invented apparatus is utilized as an alarm device to prevent mechanical system failures caused by the discontinuity of oil lubrication. The MEMS silicon thermal sensor is distinguished with a variety of advantages of small size, low power consumption, high reliability and high accuracy. In addition to the above benefits, the most significant and critical advantage is its fast response time of less than 20 msec, which makes the proximity switch control become viable for preventing equipment damage from oil lubricants discontinuity.Type: GrantFiled: June 8, 2010Date of Patent: February 4, 2014Assignee: Siargo Ltd.Inventors: Liji Huang, Jiliang Ruan, Jian Luo, Chih-Chang Chen
-
Patent number: 8544320Abstract: A wind or gas velocity profiler integrated with micromachined (a.k.a. MEMS, Micro Electro Mechanical Systems) silicon sensors in an open or enclosed space is disclosed in the present invention. There are three main embodiments disclosed in the present invention. Through the preambles of the independent claims, the advantages and merits of such measurement apparatus with MEMS flow sensor will be demonstrated as well. A silicon-based MEMS flow sensor can greatly reduce the sensor fabrication cost by a batch production. The integration with MEMS flow sensor makes the invented anemometer operate in the ways of better measurement accuracy, lower power consumption, higher reliability and a compact dimension compared to traditional anemometers such as cup anemometer, thermal anemometer and ultrasonic anemometer.Type: GrantFiled: May 18, 2010Date of Patent: October 1, 2013Assignee: Siargo Ltd.Inventors: Liji Huang, Jialuo Jack Xuan, Chih-Chang Chen
-
Patent number: 8464593Abstract: An apparatus integrated with micromachined (a.k.a. MEMS, Micro Electro Mechanical Systems) silicon sensor to measure air flow velocity on targeting correction for projectiles arms is disclosed in the present invention. The air flow velocity component perpendicular to the travel direction of bullets with respect to projectile arm body (e.g. bullets, shells, or arrows) has main effect to the targeting accuracy. Such effect is pretty much determined by the wind speed and the projectile travel distance. The integration with MEMS mass flow sensor has made the invented apparatus possible to be compact, low power consumption, low cost and high accuracy. The low power consumption characteristic of MEMS mass flow sensor is especially crucial for making the apparatus of present invention feasible by battery operated.Type: GrantFiled: May 24, 2010Date of Patent: June 18, 2013Assignee: Siargo, Ltd.Inventors: Liji Huang, Wei Ching, Chih-Chang Chen
-
Patent number: 8342018Abstract: With increasing demands on data communication and remote control in current industrial processes or gas measurement applications, development of new technologies would be necessary. The current invention presents a MEMS mass flow meter that are cost compatible with conventional variable area flow meters while providing all digital data process including accumulated flow rate measurements, user programmable flow rate alarm and flow data storage. These in-line meters provide packages in pipe diameter from 4 mm up to 100 mm. It is powered with battery and can be used as a stand-alone hand-held option. The meter is also equipped with the industrial standard RS485 Modbus communication interface for easy network and remote management.Type: GrantFiled: July 30, 2010Date of Patent: January 1, 2013Assignee: Siargo, Ltd.Inventors: Liji Huang, Kai Peng, Changming Jiang, Wenhong Deng, Chih-Chang Chen
-
Patent number: 8336392Abstract: Nowadays many electronic devices, such as LCD projector, computer servers, and air fresher etc. require reliable air cooling system to reduce the risk of electronics damage caused by overheating. The present invention disclosed an apparatus integrated with air flow sensor as an alarm apparatus for air flow clog detection. The major prior approach for air flow circulation failure detection is based on an indirect measurement method of temperature monitoring on surrounding environments, which method is suffering from the slow response and poor identification of real-time situation. The present invention will demonstrate the advantages by directly monitoring air flow over by indirectly monitoring the surrounding temperature as for the purpose of preventing air flow path clog.Type: GrantFiled: May 25, 2010Date of Patent: December 25, 2012Assignee: Siargo Ltd.Inventors: Liji Huang, Jian Luo, Changming Jiang, Yenan Liu, Wenhong Deng, Jialuo Jack Xuan, Chih-Chang Chen
-
Publication number: 20120216629Abstract: An apparatus comprising a micromachined (a.k.a. MEMS, Micro Electro Mechanical Systems) silicon flow sensor, a flow channel package, and a driving circuitry, which operates in a working principle of thermal time-of-flight (TOF) to measure gas or liquid flow speed, is disclosed in the present invention. The micromachining technique for fabricating this MEMS time-of-flight silicon thermal flow sensor can greatly reduce the sensor fabrication cost by batch production. This microfabrication process for silicon time-of-flight thermal flow sensors provides merits of small feature size, low power consumption, and high accuracy compared to conventional manufacturing methods. Thermal time-of-flight technology in principle can provide accurate flow speed measurements for gases regardless of its gas compositions. In addition, the present invention further discloses the package design and driving circuitry which is utilized by the correlated working principle.Type: ApplicationFiled: February 25, 2011Publication date: August 30, 2012Applicant: Siargo Ltd.Inventors: Liji Huang, Chih-Chang Chen, Yahong Yao, Xiaozhong Wu
-
Patent number: 8132455Abstract: A micromachined thermal mass flow sensor comprises a high mechanical strength polyimide film as a supporting layer of suspending membrane. The polyimide film provides superior thermal insulating properties to reduce the power consumption of device. Due to the tendency of humidity absorption, the polyimide suspending membrane is double side passivated on both top and bottom surfaces to sustain its long term stability from rush and humid working environment. A thin layer of silicon dioxide deposited by plasma enhanced chemical vapor deposition is overlaid between the silicon nitride and polyimide film to enhance the adhesion property of passivation layers to polyimide surface. With such embodiments, a sturdy and robust micromachined thermal mass flow sensor with high measurement accuracy could be formed.Type: GrantFiled: August 10, 2009Date of Patent: March 13, 2012Inventors: Chih-Chang Chen, Gaofeng Wang, Liji Huang, Yahong Yao