Patents by Inventor Lingpeng Guan

Lingpeng Guan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110127586
    Abstract: A lateral super junction JFET is formed from stacked alternating P type and N type semiconductor layers over a P-epi layer supported on an N+ substrate. An N+ drain column extends down through the super junction structure and the P-epi to connect to the N+ substrate to make the device a bottom drain device. N+ source column and P+ gate column extend through the super junction but stop at the P-epi layer. A gate-drain avalanche clamp diode is formed from the bottom the P+ gate column through the P-epi to the N+ drain substrate.
    Type: Application
    Filed: April 30, 2010
    Publication date: June 2, 2011
    Inventors: Madhur Bobde, Lingpeng Guan, Anup Bhalla, Hamza Yilmaz
  • Publication number: 20110127606
    Abstract: This invention discloses configurations and methods to manufacture lateral power device including a super junction structure with an avalanche clamp diode formed between the drain and the gate. The lateral super-junction structure reduces on-resistance, while the structural enhancements, including an avalanche clamping diode and an N buffer region, increase the breakdown voltage between substrate and drain and improve unclamped inductive switching (UIS) performance.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Inventors: Madhur Bobde, Anup Bhalla, Hamza Yilmaz, Wilson Ma, Lingpeng Guan, Yeeheng Lee, John Chen
  • Patent number: 7943989
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of trenches. Each of the trenches is filled with a plurality of epitaxial layers of alternating conductivity types constituting nano tubes functioning as conducting channels stacked as layers extending along a sidewall direction with a “Gap Filler” layer filling a merging-gap between the nano tubes disposed substantially at a center of each of the trenches. The “Gap Filler” layer can be very lightly doped Silicon or grown and deposited dielectric layer. In an exemplary embodiment, the plurality of trenches are separated by pillar columns each having a width approximately half to one-third of a width of the trenches.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: May 17, 2011
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Daniel Ng, Lingpeng Guan, Anup Bhalla, Wilson Ma, Moses Ho, John Chen
  • Publication number: 20110101446
    Abstract: A staggered column superjunction semiconductor device may include a cell region having one or more device cells. One or more device cells in the cell region include a semiconductor substrate configured to act as a drain and a semiconductor layer formed on the substrate. A first doped column may be formed in the semiconductor layer to a first depth and a second doped column may be formed in the semiconductor layer to a second depth. The first depth is greater than the second depth. The first and second columns are doped with dopants of a same second conductivity type and extend along a portion of a thickness of the semiconductor layer and are separated from each by a portion of the semiconductor layer.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla, Hamza Yilmaz
  • Publication number: 20110073906
    Abstract: This invention discloses a method for manufacturing a semiconductor power device in a semiconductor substrate comprises an active cell area and a termination area.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Inventors: Madhur Bobde, Lingpeng Guan, Anup Bhalla
  • Publication number: 20110049564
    Abstract: This invention discloses a method for manufacturing a semiconductor power device in a semiconductor substrate comprises an active cell area and a termination area.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 3, 2011
    Inventors: Lingpeng Guan, Anup Bhalla, Madhur Bobde, Tinggang Zhu
  • Patent number: 7892924
    Abstract: A method is disclosed for making a substantially charge balanced multi-nano shell drift region (MNSDR) for superjunction semiconductor devices atop a base substrate. The MNSDR has numerous concentric nano shell members NSM1, NSM2, . . . , NSMM (M>1) of alternating, substantially charge balanced first conductivity type and second conductivity type and with height NSHT. First, a bulk drift layer (BDL) is formed atop the base substrate. A substantially vertical cavity of pre-determined shape and size and with depth NSHT is then created into the top surface of BDL. The shell members NSM1, NSM2, . . . , NSMM are successively formed inside the vertical cavity, initially upon its vertical walls then moving toward its center, so as to successively fill the vertical cavity till a residual space remains therein. A semi-insulating or insulating fill-up nano plate is then formed inside the residual space to fill it up.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: February 22, 2011
    Assignee: Alpha and Omega Semiconductor, Inc.
    Inventors: Yeeheng Lee, Moses Ho, Lingpeng Guan
  • Publication number: 20100314682
    Abstract: This invention discloses semiconductor power device disposed on a semiconductor substrate of a first conductivity type. The semiconductor substrate supports an epitaxial layer of a second conductivity type thereon wherein the semiconductor power device is supported on a super-junction structure. The super-junction structure comprises a plurality of trenches opened from a top surface in the epitaxial layer; wherein each of the trenches having trench sidewalls covered with a first epitaxial layer of the first conductivity type to counter charge the epitaxial layer of the second conductivity type. A second epitaxial layer may be grown over the first epitaxial layer. Each of the trenches is filled with a non-doped dielectric material in a remaining trench gap space. Each of the trench sidewalls is opened with a tilted angle to form converging U-shaped trenches.
    Type: Application
    Filed: March 5, 2010
    Publication date: December 16, 2010
    Inventors: Hamza Yilmaz, Madhur Bobde, Yeeheng Lee, Lingpeng Guan, Xiaobin Wang, John Chen, Anup Bhalla
  • Publication number: 20100276779
    Abstract: A vertical transient voltage suppressing (TVS) device includes a semiconductor substrate of a first conductivity type where the substrate is heavily doped, an epitaxial layer of the first conductivity type formed on the substrate where the epitaxial layer has a first thickness, and a base region of a second conductivity type formed in the epitaxial layer where the base region is positioned in a middle region of the epitaxial layer. The base region and the epitaxial layer provide a substantially symmetrical vertical doping profile on both sides of the base region. In one embodiment, the base region is formed by high energy implantation. In another embodiment, the base region is formed as a buried layer. The doping concentrations of the epitaxial layer and the base region are selected to configure the TVS device as a punchthrough diode based TVS or an avalanche mode TVS.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 4, 2010
    Applicant: Alpha & Omega Semiconductor, Inc.
    Inventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla
  • Publication number: 20100244090
    Abstract: A transient-voltage suppressing (TVS) device disposed on a semiconductor substrate of a first conductivity type. The TVS includes a buried dopant region of a second conductivity type disposed and encompassed in an epitaxial layer of the first conductivity type wherein the buried dopant region extends laterally and has an extended bottom junction area interfacing with the underlying portion of the epitaxial layer thus constituting a Zener diode for the TVS device. The TVS device further includes a region above the buried dopant region further comprising a top dopant layer of a second conductivity type and a top contact region of a second conductivity type which act in combination with the epitaxial layer and the buried dopant region to form a plurality of interfacing PN junctions constituting a SCR acting as a steering diode to function with the Zener diode for suppressing a transient voltage.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Inventors: Madhur Bobde, Lingpeng Guan, Anup Bhalla, Limin Weng
  • Publication number: 20100163846
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of trenches. Each of the trenches is filled with a plurality of epitaxial layers of alternating conductivity types constituting nano tubes functioning as conducting channels stacked as layers extending along a sidewall direction with a “Gap Filler” layer filling a merging-gap between the nano tubes disposed substantially at a center of each of the trenches. The “Gap Filler” layer can be very lightly doped Silicon or grown and deposited dielectric layer. In an exemplary embodiment, the plurality of trenches are separated by pillar columns each having a width approximately half to one-third of a width of the trenches.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventors: Hamza Yilmaz, Daniel Ng, Lingpeng Guan, Anup Bhalla, Wilson Ma, Moses Ho, John Chen