Patents by Inventor Lingpeng Guan

Lingpeng Guan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9024375
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of trenches. Each of the trenches is filled with a plurality of epitaxial layers of alternating conductivity types constituting nano tubes functioning as conducting channels stacked as layers extending along a sidewall direction with a “Gap Filler” layer filling a merging-gap between the nano tubes disposed substantially at a center of each of the trenches. The “Gap Filler” layer can be very lightly doped Silicon or grown and deposited dielectric layer. In an exemplary embodiment, the plurality of trenches are separated by pillar columns each having a width approximately half to one-third of a width of the trenches.
    Type: Grant
    Filed: August 26, 2012
    Date of Patent: May 5, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Daniel Ng, Lingpeng Guan, Anup Bhalla, Wilson Ma, Moses Ho, John Chen
  • Publication number: 20150115333
    Abstract: This invention discloses configurations and methods to manufacture lateral power device including a super-junction structure with an avalanche clamp diode formed between the drain and the gate. The lateral super-junction structure reduces on-resistance, while the structural enhancements, including an avalanche clamping diode and an N buffer region, increase the breakdown voltage between substrate and drain and improve unclamped inductive switching (UIS) performance.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 30, 2015
    Inventors: Madhur Bobde, Anup Bhalla, Hamza Yilmaz, Wilson Ma, Lingpeng Guan, Yeeheng Lee, John Chen
  • Publication number: 20150118810
    Abstract: This invention discloses a semiconductor power device formed in a semiconductor substrate comprises a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region. The semiconductor power device further comprises a body region, a source region and a gate disposed near the top surface of the semiconductor substrate and a drain disposed at a bottom surface of the semiconductor substrate. Source trenches are opened into the highly doped region filled with a conductive trench filling material in electrical contact with the source region near the top surface. A buried field ring regions is disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region. In an alternate embodiment, there are doped regions doped with a dopant of a same conductivity type of the buried field ring regions surrounding the sidewalls of the source trenches to function as a charge supply path.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 30, 2015
    Inventors: Madhur Bobde, Anup Bhalla, Hamza Yilmaz, Lingpeng Guan
  • Publication number: 20150108568
    Abstract: A semiconductor device has an epitaxial layer grown over a substrate, each having a first dopant type. A structure disposed within the epitaxial layer has multiple trenches, each of which has a gate and a source electrode disposed within a shield oxide matrix. Multiple mesas each isolate a pair of the trenches from each other. A body region with a second dopant type is disposed above the epitaxial layer and bridges each of the mesas. A region of elevated concentration of the first dopant type is implanted at a high energy level between the epitaxial layer and the body region, which reduces resistance spreading into a channel of the device. A source region having the first dopant type is disposed above the body region.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 23, 2015
    Applicant: Vishay-Siliconix
    Inventors: Kyle TERRILL, Lingpeng GUAN
  • Patent number: 9000481
    Abstract: A low capacitance transient voltage suppressor with reduced clamping voltage includes an n+ type substrate, a first epitaxial layer on the substrate, a buried layer formed within the first epitaxial layer, a second epitaxial layer on the first epitaxial layer, and an implant layer formed within the first epitaxial layer below the buried layer. The implant layer extends beyond the buried layer. A first trench is at an edge of the buried layer and an edge of the implant layer. A second trench is at another edge of the buried layer and extends into the implant layer. Each trench is lined with a dielectric layer. A set of source regions is formed within a top surface of the second epitaxial layer. The trenches and source regions alternate. A pair of implant regions is formed in the second epitaxial layer.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: April 7, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla, Jun Hu, Wayne F. Eng
  • Patent number: 8975720
    Abstract: A superjunction device and methods for layout design and fabrication of a superjunction device are disclosed. A layout of active cell column structures can be configured so that a charge due to first conductivity type dopants balances out charge due to second conductivity type dopants in a doped layer in an active cell region. A layout of end portions of the active cell column structures proximate termination column structures can be configured so that a charge due to the first conductivity type dopants in the end portions and a charge due to the first conductivity type dopants in the termination column structures balances out charge due to the second conductivity type dopants in a portion of the doped layer between the termination column structures and the end portions.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: March 10, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Madhur Bobde
  • Patent number: 8969953
    Abstract: Self-aligned charge balanced semiconductor devices and methods for forming such devices are disclosed. One or more planar gates are formed over a semiconductor substrate of a first conductivity type. One or more deep trenches are etched in the semiconductor self-aligned to the planar gates. The trenches are filled with a semiconductor material of a second conductivity type such that the deep trenches are charge balanced with the adjacent regions of the semiconductor substrate Source and body regions are formed by implanting dopants onto the filled trenches. This process can form self-aligned charge balanced devices with a cell pitch less than 12 microns.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: March 3, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: John Chen, Yeeheng Lee, Lingpeng Guan, Moses Ho, Wilson Ma, Anup Bhalla, Hamza Yilmaz
  • Patent number: 8933506
    Abstract: This invention discloses a semiconductor device disposed in a semiconductor substrate. The semiconductor device includes a first semiconductor layer of a first conductivity type on a first major surface. The semiconductor device further includes a second semiconductor layer of a second conductivity type on a second major surface opposite the first major surface. The semiconductor device further includes an injection efficiency controlling buffer layer of a first conductivity type disposed immediately below the second semiconductor layer to control the injection efficiency of the second semiconductor layer.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: January 13, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Harsh Naik, Lingpeng Guan, Anup Bhalla, Sik Lui
  • Publication number: 20140363946
    Abstract: A low capacitance transient voltage suppressor with reduced clamping voltage includes an n+ type substrate, a first epitaxial layer on the substrate, a buried layer formed within the first epitaxial layer, a second epitaxial layer on the first epitaxial layer, and an implant layer formed within the first epitaxial layer below the buried layer. The implant layer extends beyond the buried layer. A first trench is at an edge of the buried layer and an edge of the implant layer. A second trench is at another edge of the buried layer and extends into the implant layer. Each trench is lined with a dielectric layer. A set of source regions is formed within a top surface of the second epitaxial layer. The trenches and source regions alternate. A pair of implant regions is formed in the second epitaxial layer.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 11, 2014
    Inventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla, Jun Hu, Wayne F. Eng
  • Patent number: 8900949
    Abstract: A staggered column superjunction semiconductor device may include a cell region having one or more device cells. One or more device cells in the cell region include a semiconductor substrate configured to act as a drain and a semiconductor layer formed on the substrate. A first doped column may be formed in the semiconductor layer to a first depth and a second doped column may be formed in the semiconductor layer to a second depth. The first depth is greater than the second depth. The first and second columns are doped with dopants of a same second conductivity type and extend along a portion of a thickness of the semiconductor layer and are separated from each by a portion of the semiconductor layer.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: December 2, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla, Hamza Yilmaz
  • Publication number: 20140332919
    Abstract: A termination structure for a semiconductor power device includes a plurality of termination groups formed in a lightly doped epitaxial layer of a first conductivity type over a heavily doped semiconductor substrate of a second conductivity type. Each termination group includes a trench formed in the lightly doped epitaxial layer of the first conductivity type. All sidewalls of the trench are covered by a plurality of epitaxial layers of alternating conductivity types disposed on two opposite sides and substantially symmetrical with respect to a central gap-filler layer disposed between two innermost epitaxial layers of an innermost conductivity type as the first conductivity type.
    Type: Application
    Filed: July 28, 2014
    Publication date: November 13, 2014
    Inventors: Lingpeng Guan, Madhur Bobde, Hamza Yilmaz, Karthik Padmanabhan
  • Publication number: 20140319604
    Abstract: A semiconductor power device formed in a semiconductor substrate comprising a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region supported by a heavily doped region. The semiconductor power device further comprises source trenches opened into the highly doped region filled with conductive trench filling material in electrical contact with the source region near the top surface. The semiconductor power device further comprises buried P-regions disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: July 11, 2014
    Publication date: October 30, 2014
    Inventors: Anup Bhalla, Hamza Yilmaz, Madhur Bobde, Lingpeng Guan, Jun Hu, Jongoh Kim, Yongping Ding
  • Patent number: 8835977
    Abstract: A transient-voltage suppressing (TVS) device disposed on a semiconductor substrate of a first conductivity type. The TVS includes a buried dopant region of a second conductivity type disposed and encompassed in an epitaxial layer of the first conductivity type wherein the buried dopant region extends laterally and has an extended bottom junction area interfacing with the underlying portion of the epitaxial layer thus constituting a Zener diode for the TVS device. The TVS device further includes a region above the buried dopant region further comprising a top dopant layer of a second conductivity type and a top contact region of a second conductivity type which act in combination with the epitaxial layer and the buried dopant region to form a plurality of interfacing PN junctions constituting a SCR acting as a steering diode to function with the Zener diode for suppressing a transient voltage.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: September 16, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Lingpeng Guan, Anup Bhalla, Limin Weng
  • Patent number: 8829640
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate and having an active cell area and an edge termination area the edge termination area wherein the edge termination area comprises a superjunction structure having doped semiconductor columns of alternating conductivity types with a charge imbalance between the doped semiconductor columns to generate a saddle junction electric field in the edge termination.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: September 9, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Lingpeng Guan, Anup Bhalla, Hamza Yilmaz
  • Patent number: 8829614
    Abstract: This invention discloses a method for manufacturing a semiconductor power device in a semiconductor substrate comprises an active cell area and a termination area.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: September 9, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Anup Bhalla, Madhur Bobde, Tinggang Zhu
  • Patent number: 8822300
    Abstract: A low capacitance transient voltage suppressor with reduced clamping voltage includes an n+ type substrate, a first epitaxial layer on the substrate, a buried layer formed within the first epitaxial layer, a second epitaxial layer on the first epitaxial layer, and an implant layer formed within the first epitaxial layer below the buried layer. The implant layer extends beyond the buried layer. A first trench is at an edge of the buried layer and an edge of the implant layer. A second trench is at another edge of the buried layer and extends into the implant layer. A third trench is at another edge of the implant layer. Each trench is lined with a dielectric layer. A set of source regions is formed within a top surface of the second epitaxial layer. The trenches and source regions alternate. A pair of implant regions is formed in the second epitaxial layer.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: September 2, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla, Jun Hu, Wayne F. Eng
  • Publication number: 20140231963
    Abstract: A unidirectional transient voltage suppressor (TVS) device includes first and second NPN transistors that are connected in parallel to each other. Each NPN transistor includes a collector region, an emitter. The first and second NPN structures are formed on a common substrate. The first NPN transistor has a floating base and the second NPN transistor has a base shorted to an emitter.
    Type: Application
    Filed: April 28, 2014
    Publication date: August 21, 2014
    Applicant: Alpha & Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla
  • Publication number: 20140227837
    Abstract: A lateral super junction JFET is formed from stacked alternating P type and N type semiconductor layers over a P-epi layer supported on an N+ substrate. An N+ drain column extends down through the super junction structure and the P-epi to connect to the N+ substrate to make the device a bottom drain device. N+ source column and P+ gate column extend through the super junction but stop at the P-epi layer. A gate-drain avalanche clamp diode is formed from the bottom the P+ gate column through the P-epi to the N+ drain substrate.
    Type: Application
    Filed: February 10, 2013
    Publication date: August 14, 2014
    Inventors: Madhur Bobde, Lingpeng Guan, Anup Bhalla, Hamza Yilmaz
  • Patent number: 8785279
    Abstract: A semiconductor power device formed in a semiconductor substrate comprising a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region supported by a heavily doped region. The semiconductor power device further comprises source trenches opened into the highly doped region filled with conductive trench filling material in electrical contact with the source region near the top surface. The semiconductor power device further comprises buried P-regions disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: July 22, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Anup Bhalla, Hamza Yilmaz, Madhur Bobde, Lingpeng Guan, Jun Hu, Jongoh Kim, Yongping Ding
  • Patent number: 8785306
    Abstract: A method for manufacturing a semiconductor power device on a semiconductor substrate supporting a drift region composed of an epitaxial layer by growing a first epitaxial layer followed by forming a first hard mask layer on top of the epitaxial layer; applying a first implant mask to open a plurality of implant windows and applying a second implant mask for blocking some of the implant windows to implant a plurality of dopant regions of alternating conductivity types adjacent to each other in the first epitaxial layer; repeating the first step and the second step by applying the same first and second implant masks to form a plurality of epitaxial layers then carrying out a device manufacturing process on a top side of the epitaxial layer with a diffusion process to merge the dopant regions of the alternating conductivity types as doped columns in the epitaxial layers.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: July 22, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla, Yeeheng Lee, John Chen, Moses Ho