Patents by Inventor Lingpeng Guan

Lingpeng Guan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8466510
    Abstract: A staggered column superjunction semiconductor device may include a cell region having one or more device cells. One or more device cells in the cell region include a semiconductor substrate configured to act as a drain and a semiconductor layer formed on the substrate. A first doped column may be formed in the semiconductor layer to a first depth and a second doped column may be formed in the semiconductor layer to a second depth. The first depth is greater than the second depth. The first and second columns are doped with dopants of a same second conductivity type and extend along a portion of a thickness of the semiconductor layer and are separated from each by a portion of the semiconductor layer.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: June 18, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla, Hamza Yilmaz
  • Publication number: 20130075855
    Abstract: A method for manufacturing a semiconductor power device on a semiconductor substrate supporting a drift region composed of an epitaxial layer by growing a first epitaxial layer followed by forming a first hard mask layer on top of the epitaxial layer; applying a first implant mask to open a plurality of implant windows and applying a second implant mask for blocking some of the implant windows to implant a plurality of dopant regions of alternating conductivity types adjacent to each other in the first epitaxial layer; repeating the first step and the second step by applying the same first and second implant masks to form a plurality of epitaxial layers then carrying out a device manufacturing process on a top side of the epitaxial layer with a diffusion process to merge the dopant regions of the alternating conductivity types as doped columns in the epitaxial layers.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 28, 2013
    Inventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla, Yeeheng Lee, John Chen, Moses Ho
  • Patent number: 8390058
    Abstract: This invention discloses semiconductor power device disposed on a semiconductor substrate of a first conductivity type. The semiconductor substrate supports an epitaxial layer of a second conductivity type thereon wherein the semiconductor power device is supported on a super-junction structure. The super-junction structure comprises a plurality of trenches opened from a top surface in the epitaxial layer; wherein each of the trenches having trench sidewalls covered with a first epitaxial layer of the first conductivity type to counter charge the epitaxial layer of the second conductivity type. A second epitaxial layer may be grown over the first epitaxial layer. Each of the trenches is filled with a non-doped dielectric material in a remaining trench gap space. Each of the trench sidewalls is opened with a tilted angle to form converging U-shaped trenches.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: March 5, 2013
    Assignee: Aplha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Madhur Bobde, Yeeheng Lee, Lingpeng Guan, Xiaobin Wang, John Chen, Anup Bhalla
  • Publication number: 20130049102
    Abstract: This invention discloses a semiconductor power device formed in a semiconductor substrate comprises a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region. The semiconductor power device further comprises a body region, a source region and a gate disposed near the top surface of the semiconductor substrate and a drain disposed at a bottom surface of the semiconductor substrate. The semiconductor power device further comprises source trenches opened into the highly doped region filled with a conductive trench filling material in electrical contact with the source region near the top surface. The semiconductor power device further comprises a buried field ring regions disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region.
    Type: Application
    Filed: August 25, 2011
    Publication date: February 28, 2013
    Inventors: Madhur Bobde, Anup Bhalla, Hamza Yilmaz, Lingpeng Guan, Jun Hu
  • Patent number: 8373208
    Abstract: A lateral super junction JFET is formed from stacked alternating P type and N type semiconductor layers over a P-epi layer supported on an N+ substrate. An N+ drain column extends down through the super junction structure and the P-epi to connect to the N+ substrate to make the device a bottom drain device. N+ source column and P+ gate column extend through the super junction but stop at the P-epi layer. A gate-drain avalanche clamp diode is formed from the bottom the P+ gate column through the P-epi to the N+ drain substrate.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: February 12, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Lingpeng Guan, Anup Bhalla, Hamza Yilmaz
  • Publication number: 20130001694
    Abstract: A low capacitance transient voltage suppressor with reduced clamping voltage includes an n+ type substrate, a first epitaxial layer on the substrate, a buried layer formed within the first epitaxial layer, a second epitaxial layer on the first epitaxial layer, and an implant layer formed within the first epitaxial layer below the buried layer. The implant layer extends beyond the buried layer. A first trench is at an edge of the buried layer and an edge of the implant layer. A second trench is at another edge of the buried layer and extends into the implant layer. A third trench is at another edge of the implant layer. Each trench is lined with a dielectric layer. A set of source regions is formed within a top surface of the second epitaxial layer. The trenches and source regions alternate. A pair of implant regions is formed in the second epitaxial layer.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 3, 2013
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla, Jun Hu, Wayne F. Eng
  • Publication number: 20130001695
    Abstract: An epitaxial layer is supported on top of a substrate. First and second body regions are formed within the epitaxial layer separated by a predetermined lateral distance. Trigger and source regions are formed within the epitaxial layer. A first source region is transversely adjacent the first body region between first and second trigger regions laterally adjacent the first source region and transversely adjacent the first body region. A second source region is located transversely adjacent the second body region between third and fourth trigger regions laterally adjacent the second source region and transversely adjacent the second body region. A third source region is laterally adjacent the fourth trigger region. The fourth trigger region is between the second and third source regions. An implant region within the fourth trigger region is laterally adjacent the third source region.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 3, 2013
    Inventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla
  • Publication number: 20120329238
    Abstract: A vertical transient voltage suppressing (TVS) device includes a semiconductor substrate of a first conductivity type where the substrate is heavily doped, an epitaxial layer of the first conductivity type formed on the substrate where the epitaxial layer has a first thickness, and a base region of a second conductivity type formed in the epitaxial layer where the base region is positioned in a middle region of the epitaxial layer. The base region and the epitaxial layer provide a substantially symmetrical vertical doping profile on both sides of the base region. In one embodiment, the base region is formed by high energy implantation. In another embodiment, the base region is formed as a buried layer. The doping concentrations of the epitaxial layer and the base region are selected to configure the TVS device as a punchthrough diode based TVS or an avalanche mode TVS.
    Type: Application
    Filed: September 6, 2012
    Publication date: December 27, 2012
    Applicant: ALPHA & OMEGA SEMICONDUCTOR, INC.
    Inventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla
  • Patent number: 8338854
    Abstract: A transient-voltage suppressing (TVS) device disposed on a semiconductor substrate of a first conductivity type. The TVS includes a buried dopant region of a second conductivity type disposed and encompassed in an epitaxial layer of the first conductivity type wherein the buried dopant region extends laterally and has an extended bottom junction area interfacing with the underlying portion of the epitaxial layer thus constituting a Zener diode for the TVS device. The TVS device further includes a region above the buried dopant region further comprising a top dopant layer of a second conductivity type and a top contact region of a second conductivity type which act in combination with the epitaxial layer and the buried dopant region to form a plurality of interfacing PN junctions constituting a SCR acting as a steering diode to function with the Zener diode for suppressing a transient voltage.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: December 25, 2012
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Lingpeng Guan, Anup Bhalla, Limin Weng
  • Publication number: 20120319132
    Abstract: An integrated structure includes a plurality of split-gate trench MOSFETs. A plurality of trenches is formed within the silicon carbide substrate composition, each trench is lined with a passivation layer, each trench being substantially filled with a first conductive region a second conductive region and an insulating material having a dielectric constant similar to a dielectric constant of the silicon carbide substrate composition. The first conductive region is separated from the passivation layer by the insulating material. The first and second conductive regions form gate regions for each trench MOSFET. The first conductive region is separated from the second conductive region by the passivation layer. A doped body region of a first conductivity type formed at an upper portion of the substrate composition and a doped source region of a second conductivity type formed inside the doped body region.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 20, 2012
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Anup Bhalla, Madhur Bobde, Lingpeng Guan
  • Patent number: 8324053
    Abstract: This invention discloses a method for manufacturing a semiconductor power device in a semiconductor substrate comprises an active cell area and a termination area.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: December 4, 2012
    Assignee: Alpha and Omega Semiconductor, Inc.
    Inventors: Madhur Bobde, Lingpeng Guan, Anup Bhalla
  • Patent number: 8288839
    Abstract: A vertical transient voltage suppressing (TVS) device includes a semiconductor substrate of a first conductivity type where the substrate is heavily doped, an epitaxial layer of the first conductivity type formed on the substrate where the epitaxial layer has a first thickness, and a base region of a second conductivity type formed in the epitaxial layer where the base region is positioned in a middle region of the epitaxial layer. The base region and the epitaxial layer provide a substantially symmetrical vertical doping profile on both sides of the base region. In one embodiment, the base region is formed by high energy implantation. In another embodiment, the base region is formed as a buried layer. The doping concentrations of the epitaxial layer and the base region are selected to configure the TVS device as a punchthrough diode based TVS or an avalanche mode TVS.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: October 16, 2012
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla
  • Patent number: 8283213
    Abstract: This invention discloses an insulated gate bipolar transistor (IGBT) formed in a semiconductor substrate. The IGBT comprises a buffer layer of a first conductivity type formed below an epitaxial layer of the first conductivity having body and source regions therein. The IGBT further includes a lowly doped substrate layer below the buffer layer and a dopant layer of a second conductivity type disposed below the lowly doped substrate layer and above a drain electrode of said IGBT attached to a bottom surface of said semiconductor substrate wherein the dopant layer of the second conductivity type has a higher dopant concentration than the lowly doped substrate layer.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: October 9, 2012
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Anup Bhalla, Lingpeng Guan
  • Publication number: 20120248566
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate and having an active cell area and an edge termination area the edge termination area wherein the edge termination area comprises a superjunction structure having doped semiconductor columns of alternating conductivity types with a charge imbalance between the doped semiconductor columns to generate a saddle junction electric field in the edge termination.
    Type: Application
    Filed: March 29, 2011
    Publication date: October 4, 2012
    Inventors: Madhur Bobde, Lingpeng Guan, Anup Bhalla, Hamza Yilmaz
  • Patent number: 8263482
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of trenches. Each of the trenches is filled with a plurality of epitaxial layers of alternating conductivity types constituting nano tubes functioning as conducting channels stacked as layers extending along a sidewall direction with a “Gap Filler” layer filling a merging-gap between the nano tubes disposed substantially at a center of each of the trenches. The “Gap Filler” layer can be very lightly doped Silicon or grown and deposited dielectric layer. In an exemplary embodiment, the plurality of trenches are separated by pillar columns each having a width approximately half to one-third of a width of the trenches.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: September 11, 2012
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Daniel Ng, Lingpeng Guan, Anup Bhalla, Wilson Ma, Moses Ho, John Chen
  • Publication number: 20120193676
    Abstract: This invention discloses a semiconductor device disposed in a semiconductor substrate. The semiconductor device includes a first semiconductor layer of a first conductivity type on a first major surface. The semiconductor device further includes a second semiconductor layer of a second conductivity type on a second major surface opposite the first major surface. The semiconductor device further includes an injection efficiency controlling buffer layer of a first conductivity type disposed immediately below the second semiconductor layer to control the injection efficiency of the second semiconductor layer.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Inventors: Madhur Bobde, Harsh Naik, Lingpeng Guan, Anup Bhalla, Sik Lui
  • Publication number: 20120025261
    Abstract: This invention discloses an insulated gate bipolar transistor (IGBT) formed in a semiconductor substrate. The IGBT comprises a buffer layer of a first conductivity type formed below an epitaxial layer of the first conductivity having body and source regions therein. The IGBT further includes a lowly doped substrate layer below the buffer layer and a dopant layer of a second conductivity type disposed below the lowly doped substrate layer and above a drain electrode of said IGBT attached to a bottom surface of said semiconductor substrate wherein the dopant layer of the second conductivity type has a higher dopant concentration than the lowly doped substrate layer.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 2, 2012
    Inventors: Madhur Bobde, Anup Bhalla, Lingpeng Guan
  • Publication number: 20110204442
    Abstract: A superjunction device and methods for layout design and fabrication of a superjunction device are disclosed. A layout of active cell column structures can be configured so that a charge due to first conductivity type dopants balances out charge due to second conductivity type dopants in a doped layer in an active cell region. A layout of end portions of the active cell column structures proximate termination column structures can be configured so that a charge due to the first conductivity type dopants in the end portions and a charge due to the first conductivity type dopants in the termination column structures balances out charge due to the second conductivity type dopants in a portion of the doped layer between the termination column structures and the end portions.
    Type: Application
    Filed: February 19, 2010
    Publication date: August 25, 2011
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Anup Bhalla, Tinggang Zhu, Madhur Bobde
  • Publication number: 20110183499
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of trenches. Each of the trenches is filled with a plurality of epitaxial layers of alternating conductivity types constituting nano tubes functioning as conducting channels stacked as layers extending along a sidewall direction with a “Gap Filler” layer filling a merging-gap between the nano tubes disposed substantially at a center of each of the trenches. The “Gap Filler” layer can be very lightly doped Silicon or grown and deposited dielectric layer. In an exemplary embodiment, the plurality of trenches are separated by pillar columns each having a width approximately half to one-third of a width of the trenches.
    Type: Application
    Filed: March 31, 2011
    Publication date: July 28, 2011
    Inventors: Hamza Yilmaz, Daniel Ng, Lingpeng Guan, Anup Bhalla, Wilson Ma, Moses Ho, John Chen
  • Publication number: 20110147830
    Abstract: Self-aligned charge balanced semiconductor devices and methods for forming such devices are disclosed. One or more planar gates are formed over a semiconductor substrate of a first conductivity type. One or more deep trenches are etched in the semiconductor self-aligned to the planar gates. The trenches are filled with a semiconductor material of a second conductivity type such that the deep trenches are charge balanced with the adjacent regions of the semiconductor substrate This process can form self-aligned charge balanced devices with a cell pitch less than 12 microns.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 23, 2011
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: John Chen, Yeeheng Lee, Lingpeng Guan, Moses Ho, Wilson Ma, Anup Bhalla, Hamza Yilmaz