Patents by Inventor Liwen Dong

Liwen Dong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060160246
    Abstract: Graphitic nanotubes, which include tubular fullerenes (commonly called “buckytubes”) and fibrils, which are functionalized by chemical substitution, are used as solid supports in electrogenerated chemiluminescence assays. The graphitic nanotubes are chemically modified with functional group biomolecules prior to use in an assay. Association of electrochemiluminescent ruthenium complexes with the functional group biomolecule-modified nanotubes permits detection of molecules including nucleic acids, antigens, enzymes, and enzyme substrates by multiple formats.
    Type: Application
    Filed: March 20, 2006
    Publication date: July 20, 2006
    Inventors: Richard Massey, Mark Martin, Liwen Dong, Ming Lu, Alan Fischer, Fabian Jameison, Pam Liang, Robert Hoch, Jonathan Leland
  • Patent number: 7052861
    Abstract: Graphitic nanotubes, which include tubular fullerenes (commonly called “buckytubes”) and fibrils, which are functionalized by chemical substitution, are used as solid supports in electrogenerated chemiluminescence assays. The graphitic nanotubes are chemically modified with functional group biomolecules prior to use in an assay. Association of electrochemiluminescent ruthenium complexes with the functional group biomolecule-modified nanotubes permits detection of molecules including nucleic acids, antigens, enzymes, and enzyme substrates by multiple formats.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: May 30, 2006
    Assignee: Meso Scale Technologies, LLC.
    Inventors: Richard J. Massey, Mark T. Martin, Liwen Dong, Ming Lu, Alan Fischer, Fabian Jameison, Pam Liang, Robert Hoch, Jonathan K. Leland
  • Publication number: 20050181443
    Abstract: A method of generating a electrochemiluminescent emission, which comprises exposing an electrochemiluminescent label linked to a coreactant, to conditions suitable for inducing electrochemiluminescence; said compound; a system for generating an electrochemiluminescent emission, which comprises said compound, means for exposing said compound to electrochemical energy, and means for detecting or measuring luminescence emitted from said compound or a composition containing same; and a kit for performing an assay using said compound.
    Type: Application
    Filed: April 19, 2005
    Publication date: August 18, 2005
    Inventors: Ji Sun, Pam Liang, Mark Martin, Liwen Dong
  • Patent number: 6808939
    Abstract: Bipyridine or phenanthroline ligands presenting functional groups that prevent non-specific binding (in particular, negatively charged functional groups that are unaffected by standard conditions for conjugating biological reagents through amide bonds) are described as are luminescent metal complexes comprising these ligands. The use of luminescent ruthenium and osmium complexes comprising these ligands in electrochemiluminescence assays shows that the use of these labels can significantly reduce the amount of non-specific binding observed relative to assays carried out using reagents labeled with analogous labels that don't present functional groups that decrease non-specific binding.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: October 26, 2004
    Assignees: IGEN International, Inc., BioVeris Corporation
    Inventors: George B. Sigal, Howie Tjiong, Liwen Dong, Md. Athar Masood, Richard C. Titmas
  • Publication number: 20040202603
    Abstract: Graphitic nanotubes, which includes tubular fullerenes (commonly called “buckytubes”) and fibrils, which are functionalized by chemical substitution or by adsorption of functional moieties. More specifically the invention relates to graphitic nanotubes which are uniformly or non-uniformly substituted with chemical moieties or upon which certain cyclic compounds are adsorbed and to complex structures comprised of such functionalized nanotubes linked to one another. The invention also relates to methods for introducing functional groups onto the surface of such nanotubes. The invention further relates to uses for functionalized nanotubes.
    Type: Application
    Filed: April 30, 2004
    Publication date: October 14, 2004
    Applicant: Hyperion Catalysis International, Inc.
    Inventors: Alan Fischer, Robert Hoch, David Moy, Ming Lu, Mark Martin, Chun Ming Niu, Naoya Ogata, Howard Tennent, Liwen Dong, Ji Sun, Larry Helms, Fabian Jameison, Pam Liang, David Simpson
  • Publication number: 20030027357
    Abstract: Bipyridine or phenanthroline ligands presenting functional groups that prevent non-specific binding (in particular, negatively charged functional groups that are unaffected by standard conditions for conjugating biological reagents through amide bonds) are described as are luminescent metal complexes comprising these ligands. The use of luminescent ruthenium and osmium complexes comprising these ligands in electrochemiluminescence assays shows that the use of these labels can significantly reduce the amount of non-specific binding observed relative to assays carried out using reagents labeled with analogous labels that don't present functional groups that decrease non-specific binding.
    Type: Application
    Filed: June 29, 2001
    Publication date: February 6, 2003
    Inventors: George B. Sigal, Howard Isaac Tjiong, Liwen Dong, Athar Masood, Richard C. Titmas
  • Publication number: 20020086335
    Abstract: Graphitic nanotubes, which include tubular fullerenes (commonly called “buckytubes”) and fibrils, which are functionalized by chemical substitution, are used as solid supports in electrogenerated chemiluminescence assays. The graphitic nanotubes are chemically modified with functional group biomolecules prior to use in an assay. Association of electrochemiluminescent ruthenium complexes with the functional group biomolecule-modified nanotubes permits detection of molecules including nucleic acids, antigens, enzymes, and enzyme substrates by multiple formats.
    Type: Application
    Filed: December 5, 2001
    Publication date: July 4, 2002
    Applicant: Meso Scale Technology LLP
    Inventors: Richard J. Massey, Mark T. Martin, Liwen Dong, Ming Lu, Alan Fischer, Fabian Jameison, Pam Liang, Robert Hoch, Jonathan K. Leland
  • Patent number: 6362011
    Abstract: Graphitic nanotubes, which include tubular fullerenes (commonly called “buckytubes”) and fibrils, which are functionalized by chemical substitution, are used as solid supports in electrogenerated chemiluminescence assays. The graphitic nanotubes are chemically modified with functional group biomolecules prior to use in an assay. Association of electrochemiluminescent ruthenium complexes with the functional group biomolecule-modified nanotubes permits detection of molecules including nucleic acids, antigens, enzymes, and enzyme substrates by multiple formats.
    Type: Grant
    Filed: February 2, 1999
    Date of Patent: March 26, 2002
    Assignee: Meso Scale Technologies, LLC
    Inventors: Richard J. Massey, Mark T. Martin, Liwen Dong, Ming Lu, Alan Fischer, Fabian Jameison, Pam Liang, Robert Hoch, Jonathan K. Leland
  • Publication number: 20010018187
    Abstract: A method of generating a electrochemiluminescent emission, which comprises exposing an electrochemiluminescent label linked to a coreactant, to conditions suitable for inducing electrochemiluminescence; said compound; a system for generating an electrochemiluminescent emission, which comprises said compound, means for exposing said compound to electrochemical energy, and means for detecting or measuring luminescence emitted from said compound or a composition containing same; and a kit for performing an assay using said compound.
    Type: Application
    Filed: December 20, 2000
    Publication date: August 30, 2001
    Applicant: IGEN International, Inc.
    Inventors: Ji Sun, Pam Liang, Mark T. Martin, Liwen Dong
  • Publication number: 20010003647
    Abstract: A method of generating a electrochemiluminescent emission, which comprises exposing an electrochemiluminescent label linked to a coreactant, to conditions suitable for inducing electrochemiluminescence; said compound; a system for generating an electrochemiluminescent emission, which comprises said compound, means for exposing said compound to electrochemical energy, and means for detecting or measuring luminescence emitted from said compound or a composition containing same; and a kit for performing an assay using said compound.
    Type: Application
    Filed: September 25, 1997
    Publication date: June 14, 2001
    Inventors: JI SUN, PAM LIANG, MARK T. MARTIN, LIWEN DONG
  • Patent number: 6165708
    Abstract: Detectable compounds comprising a chemically-transformable first compound covalently linked to an electrochemiluminescent compound are provided. Such compounds are useful in processes and kits that monitor the status of the first compound and derive information from such monitoring.
    Type: Grant
    Filed: June 23, 1997
    Date of Patent: December 26, 2000
    Assignee: IGEN International, Inc.
    Inventors: Pam Liang, Mark T. Martin, Liwen Dong
  • Patent number: 5866434
    Abstract: Graphitic nanotubes, which include tubular fullerenes (commonly called "buckytubes") and fibrils, which are functionalized by chemical substitution, are used as solid supports in electrogenerated chemiluminescence assays. The graphitic nanotubes are chemically modified with functional group biomolecules prior to use in an assay. Association of electrochemiluminescent ruthenium complexes with the functional group biomolecule-modified nanotubes permits detection of molecules including nucleic acids, antigens, enzymes, and enzyme substrates by multiple formats.
    Type: Grant
    Filed: March 6, 1996
    Date of Patent: February 2, 1999
    Assignee: Meso Scale Technology
    Inventors: Richard J. Massey, Mark T. Martin, Liwen Dong, Ming Lu, Alan Fischer, Fabian Jameison, Pam Liang, Robert Hoch, Jonathan K. Leland
  • Patent number: 5804400
    Abstract: A rapid single step assay suitable for the detection or quantification of enzymes, in particular, hydrolases, especially, aminopeptidases and esterases. The enzymatic reaction causes the cleavage of a metal ligand labelled hydrolase substrate. The cleaved ligand alters the electrochemiluminescence of bidentate aromatic heterocyclic nitrogen-containing ligand reagent. The change in electrochemiluminescence correlates to the presence of hydrolase activity present in the sample. The assay can be performed on an IGEN Origen.RTM. Analyzer.
    Type: Grant
    Filed: February 5, 1996
    Date of Patent: September 8, 1998
    Assignee: Igen International, Inc.
    Inventors: Mark Martin, Liwen Dong
  • Patent number: 5643713
    Abstract: Detectable compounds comprising a chemically-transformable first compound covalently linked to an electrochemiluminescent compound are provided. Such compounds are useful in processes and kits that monitor the status of the first compound and derive information from such monitoring.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 1, 1997
    Inventors: Pam Liang, Mark T. Martin, Liwen Dong