Patents by Inventor Lorenzo Fratin

Lorenzo Fratin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230329010
    Abstract: Methods, systems, and devices for trench and pier architectures for three-dimensional memory arrays are described. A semiconductor device (e.g., a memory die) may include pier structures formed in contact with features formed from alternating layers of materials deposited over a substrate, which may provide support for subsequent processing. For example, a memory die may include alternating layers of a first material and a second material, which may be formed into various cross-sectional patterns. Pier structures may be formed in contact with the cross sectional patterns such that, when either the first material or the second material is removed to form voids, the pier structures may provide mechanical support of the cross-sectional pattern of the remaining material. In some examples, such pier structures may be formed within or along trenches or other features aligned along a direction of a memory array, which may provide a degree of self-alignment for subsequent operations.
    Type: Application
    Filed: April 6, 2022
    Publication date: October 12, 2023
    Inventors: Fabio Pellizzer, Russell L. Meyer, Stephen W. Russell, Lorenzo Fratin
  • Publication number: 20230309326
    Abstract: Methods, systems, and devices for dense piers for three-dimensional memory arrays are described. In some examples, a memory device may include pier structures formed in contact with features formed from alternating layers of materials deposited over a substrate. For example, a memory device may include alternating layers of a first material and a second material. In some examples, the alternating layers may be formed into a pair of interleaved comb structures. Pier structures may be formed in contact with the cross sectional patterns, and may provide mechanical support of cross-sectional pattern of the remaining material. In some examples, the piers may further act as a separator between memory cells or other features of the memory device. For example, the piers may extend into at least a portion of the interleaved comb structures, and may accordingly act as barriers during subsequent depositions of materials.
    Type: Application
    Filed: March 24, 2022
    Publication date: September 28, 2023
    Inventors: Stephen W. Russell, Enrico Varesi, David H. Wells, Paolo Fantini, Lorenzo Fratin
  • Publication number: 20230307025
    Abstract: Methods, systems, and devices for word line structures for three-dimensional memory arrays are described. A memory device may include word line structures that support accessing memory cells arranged in a three-dimensional level architecture. The word line structures may be arranged above a substrate and be separated from each other by respective dielectric layers. Each word line structure may include word line members and a word line plate that is connected to each word line member. Each word line plate may include a contact that may be coupled with a word line decoder operable to bias the word line plate. To couple the word line plate to the word line decoder, the memory device may include first vias that extend through holes in the word line plates and are coupled with second vias that extend from a respective contact through openings in the word line plates above the contact.
    Type: Application
    Filed: March 24, 2022
    Publication date: September 28, 2023
    Inventors: Stephen W. Russell, Lorenzo Fratin, Enrico Varesi, Paolo Fantini
  • Publication number: 20230309426
    Abstract: Methods, systems, and devices for sparse piers for three-dimensional memory arrays are described. A semiconductor device, such as a memory die, may include pier structures formed in contact with features formed from alternating layers of materials deposited over a substrate, which may provide mechanical support for subsequent processing. For example, a memory die may include alternating layers of a first material and a second material, which may be formed into various cross-sectional patterns. In some examples, the alternating layers may be formed into one or more pairs of interleaved comb structures. Pier structures may be formed in contact with the cross sectional patterns to provide mechanical support between instances of the cross-sectional patterns, or between layers of the cross-sectional patterns (e.g., when one or more layers are removed from the cross-sectional patterns), or both.
    Type: Application
    Filed: March 24, 2022
    Publication date: September 28, 2023
    Inventors: Stephen W. Russell, Enrico Varesi, David H. Wells, Paolo Fantini, Lorenzo Fratin
  • Patent number: 11764146
    Abstract: Methods for forming microelectronic device structures include forming interconnects that are self-aligned with both a lower conductive structure and an upper conductive structure. At least one lateral dimension of an interconnect is defined upon subtractively patterning the lower conductive structure along with a first sacrificial material. At least one other lateral dimension of the interconnect is defined by patterning a second sacrificial material or by an opening formed in a dielectric material through which the interconnect will extend. A portion of the first sacrificial material, exposed within the opening through the dielectric material, along with the second sacrificial material are removed and replaced with conductive material(s) to integrally form the interconnect and the upper conductive structure.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: September 19, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Stephen W. Russell, Fabio Pellizzer, Lorenzo Fratin
  • Publication number: 20230270025
    Abstract: Methods, systems, and devices for chalcogenide memory device compositions are described. A memory cell may use a chalcogenide material having a composition as described herein as a storage materials, a selector materials, or as a self-selecting storage material. A chalcogenide material as described herein may include a sulfurous component, which may be completely sulfur (S) or may be a combination of sulfur and one or more other elements, such as selenium (Se). In addition to the sulfurous component, the chalcogenide material may further include one or more other elements, such as germanium (Ge), at least one Group-III element, or arsenic (As).
    Type: Application
    Filed: February 21, 2022
    Publication date: August 24, 2023
    Inventors: Dale W. Collins, Paolo Fantini, Lorenzo Fratin, Enrico Varesi
  • Publication number: 20230238050
    Abstract: Methods, systems, and devices for a decoding architecture for memory devices are described. Word line plates of a memory array may each include a sheet of conductive material that includes a first portion extending in a first direction within a plane along with multiple fingers extending in a second direction within the plane. Two word line plates in a same plane may be activated via a shared electrode. Memory cells coupled with the two word line plates sharing the electrode, or a subset thereof, may represent a logical page for accessing memory cells. A memory cell may be accessed via a first voltage applied to a word line plate coupled with the memory cell and a second voltage applied to a pillar electrode coupled with the memory cell. Parallel or simultaneous access operations may be performed for two or more memory cells within a same page of memory cells.
    Type: Application
    Filed: January 24, 2023
    Publication date: July 27, 2023
    Inventors: Paolo Fantini, Enrico Varesi, Lorenzo Fratin, Fabio Pellizzer
  • Patent number: 11696454
    Abstract: The present disclosure includes three dimensional memory arrays. An embodiment includes a first plurality of conductive lines separated from one another by an insulation material, a second plurality of conductive lines arranged to extend substantially perpendicular to and pass through the first plurality of conductive lines and the insulation material, and a storage element material formed between the first and second plurality of conductive lines where the second plurality of conductive lines pass through the first plurality of conductive lines. The storage element material is between and in direct contact with a first portion of each respective one of the first plurality of conductive lines and a portion of a first one of the second plurality of conductive lines, and a second portion of each respective one of the first plurality of conductive lines and a portion of a second one of the second plurality of conductive lines.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: July 4, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Fabio Pellizzer, Russell L. Meyer, Agostino Pirovano, Lorenzo Fratin
  • Patent number: 11659778
    Abstract: Methods, systems, and devices for composite electrode material chemistry are described. A memory device may include an access line, a storage element comprising chalcogenide, and an electrode coupled with the memory element and the access line. The electrode may be made of a composition of a first material doped with a second material. The second material may include a tantalum-carbon compound. In some cases, the second may be operable to be chemically inert with the storage element. The second material may include a thermally stable electrical resistivity and a lower resistance to signals communicated between the access line and the storage element across a range of operating temperatures of the storage element as compared with a resistance of the first material.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: May 23, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Pengyuan Zheng, Enrico Varesi, Lorenzo Fratin, Dale Collins, Yongjun J. Hu
  • Publication number: 20230114077
    Abstract: Methods, systems, and devices for cross point array architecture for multiple decks are described. A memory array may include multiple decks, such as six or eight decks. The memory array may also include sockets for coupling access lines with associated decoders. The sockets may be included in sub-blocks of the array. A sub-block may be configured to include sockets for multiple access lines. A socket may intersect an access line in the middle of the access line, or at an end of the access line. Sub-blocks containing sockets for an access line may be separated by a period based on the access line.
    Type: Application
    Filed: October 12, 2021
    Publication date: April 13, 2023
    Inventors: Agostino Pirovano, Lorenzo Fratin
  • Patent number: 11587606
    Abstract: Methods, systems, and devices for a decoding architecture for memory devices are described. Word line plates of a memory array may each include a sheet of conductive material that includes a first portion extending in a first direction within a plane along with multiple fingers extending in a second direction within the plane. Two word line plates in a same plane may be activated via a shared electrode. Memory cells coupled with the two word line plates sharing the electrode, or a subset thereof, may represent a logical page for accessing memory cells. A memory cell may be accessed via a first voltage applied to a word line plate coupled with the memory cell and a second voltage applied to a pillar electrode coupled with the memory cell. Parallel or simultaneous access operations may be performed for two or more memory cells within a same page of memory cells.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: February 21, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Paolo Fantini, Enrico Varesi, Lorenzo Fratin, Fabio Pellizzer
  • Publication number: 20230032006
    Abstract: Methods, systems, and devices for decoding for a memory device are described. A decoder may include a first vertical n-type transistor and a second vertical n-type transistor that extends in a third direction relative to a die of a memory array. The first vertical n-type transistor may be configured to selectively couple an access line with a source node and the second n-type transistor may be configured to selectively couple the access line with a ground node. To activate the access line coupled with the first and second vertical n-type transistors, the first vertical n-type transistor may be activated, the second vertical n-type transistor may be deactivated, and the source node coupled with the first vertical n-type transistor may have a voltage applied that differs from a ground voltage.
    Type: Application
    Filed: August 10, 2022
    Publication date: February 2, 2023
    Inventors: Paolo Fantini, Lorenzo Fratin, Fabio Pellizzer
  • Publication number: 20230027799
    Abstract: Methods, systems, and devices for techniques for forming self-aligned memory structures are described. Aspects include etching a layered assembly of materials including a first conductive material and a first sacrificial material to form a first set of channels along a first direction that creates a first set of sections. An insulative material may be deposited within each of the first set of channels and a second sacrificial material may be deposited onto the first set of sections and the insulating material. A second set of channels may be etched into the layered assembly of materials along a second direction that creates a second set of sections, where the second set of channels extend through the first and second sacrificial materials. Insulating material may be deposited in the second set of channels and the sacrificial materials removed leaving a cavity. A memory material may be deposited in the cavity.
    Type: Application
    Filed: August 4, 2022
    Publication date: January 26, 2023
    Inventors: Stephen W. Russell, Andrea Redaelli, Innocenzo Tortorelli, Agostino Pirovano, Fabio Pellizzer, Lorenzo Fratin
  • Publication number: 20230005535
    Abstract: Methods, systems, and devices for self-selecting memory with horizontal access lines are described. A memory array may include first and second access lines extending in different directions. For example, a first access line may extend in a first direction, and a second access line may extend in a second direction. At each intersection, a plurality of memory cells may exist, and each plurality of memory cells may be in contact with a self-selecting material. Further, a dielectric material may be positioned between a first plurality of memory cells and a second plurality of memory cells in at least one direction. each cell group (e.g., a first and second plurality of memory cells) may be in contact with one of the first access lines and second access lines, respectively.
    Type: Application
    Filed: July 13, 2022
    Publication date: January 5, 2023
    Inventors: Lorenzo Fratin, Fabio Pellizzer, Agostino Pirovano, Russell L. Meyer
  • Publication number: 20220415392
    Abstract: Methods, systems, and devices for decoding for a memory device are described. A decoder of a memory device may include transistors in a first layer between a memory array and a second layer that includes one or more components associated with the memory array. The second layer may include CMOS pre-decoding circuitry, among other components. The decoder may include CMOS transistors in the first layer. The CMOS transistors may control which voltage source is coupled with an access line based on a gate voltage applied to a p-type transistor and a n-type transistor. For example, a first gate voltage applied to a p-type transistor may couple a source node with the access line and bias the access line to a source voltage. A second gate voltage applied to the n-type transistor may couple a ground node with the access line and bias the access line to a ground voltage.
    Type: Application
    Filed: July 27, 2022
    Publication date: December 29, 2022
    Inventors: Lorenzo Fratin, Paolo Fantini, Fabio Pellizzer, Thomas M. Graettinger
  • Patent number: 11538860
    Abstract: Methods, systems, and devices for memory arrays having graded memory stack resistances are described. An apparatus may include a first subset of memory stacks having a first resistance based on a physical and/or electrical distance of the first subset of memory stacks from at least one of a first driver component or a second driver component. The apparatus may include a second subset of memory stacks having a second resistance that is less than the first resistance based on a physical and/or electrical distance of the second subset of memory from at least one of the first driver component or the second driver component.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: December 27, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Fabio Pellizzer, Lorenzo Fratin, Hongmei Wang
  • Publication number: 20220384722
    Abstract: Methods, systems, and devices for a memory device with laterally formed memory cells are described. A material stack that includes a conductive layer between multiple dielectric layers may be formed, where the conductive layer and dielectric layers may form a channel in a sidewall of the material stack. The channel may be filled with one or more materials, where a first side of an outermost material of the one or more materials may be exposed. An opening may be formed in the material stack that exposes a second side of at least one material of the one or more materials. The opening may be used to replace a portion of the at least one material with a chalcogenide material where the electrode materials may be formed before replacing the portion of the at least one material with the chalcogenide material.
    Type: Application
    Filed: May 27, 2021
    Publication date: December 1, 2022
    Inventors: Thomas M. Graettinger, Lorenzo Fratin, Patrick M. Flynn, Enrico Varesi, Paolo Fantini
  • Publication number: 20220384723
    Abstract: Methods, systems, and devices for techniques that support sidewall structures for memory cells in vertical structures are described. A memory cell may include a first electrode, a second electrode, and a self-selecting storage element between the first electrode and the second electrode. The self-selecting storage element may extend between the first electrode and the second electrode in a direction that is parallel with a plane defined by the substrate. The self-selecting storage element may also include a bulk region and a sidewall region. The bulk region may include a chalcogenide material having a first composition, and the sidewall region may include the chalcogenide material having a second composition that is different than the first composition. Also, the sidewall region may extend between the first electrode and the second electrode.
    Type: Application
    Filed: May 27, 2021
    Publication date: December 1, 2022
    Inventors: Lorenzo Fratin, Paolo Fantini, Enrico Varesi
  • Publication number: 20220384719
    Abstract: Methods, systems, and devices for techniques for memory cells with sidewall and bulk regions in vertical structures are described. A memory cell may include a first electrode, a second electrode, and a self-selecting storage element between the first electrode and the second electrode. The bulk region may extend between the first electrode and the sidewall region. The bulk region may include a chalcogenide material having a first composition, and the sidewall region may include the chalcogenide material having a second composition that is different than the first composition. Also, the sidewall region may separate the bulk region from the second electrode.
    Type: Application
    Filed: May 27, 2021
    Publication date: December 1, 2022
    Inventors: Lorenzo Fratin, Enrico Varesi, Paolo Fantini
  • Publication number: 20220384720
    Abstract: Methods, systems, and devices for techniques for memory cells with sidewall and bulk regions in planar structures are described. A memory cell may include a first electrode, a second electrode, and a self-selecting storage element between the first electrode and the second electrode. A conductive path between the first electrode and the second electrode may extend in a direction away from a plane defined by a substrate. The self-selecting storage element may include a bulk region and a sidewall region. The bulk region may include a chalcogenide material having a first composition, and the sidewall region may include the chalcogenide material having a second composition that is different than the first composition. The bulk region and sidewall region may extend between the first electrode and the second electrode and in the direction away from the plane defined by the substrate.
    Type: Application
    Filed: May 27, 2021
    Publication date: December 1, 2022
    Inventors: Lorenzo Fratin, Enrico Varesi, Paolo Fantini