Patents by Inventor Lorenzo Fratin

Lorenzo Fratin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200321523
    Abstract: Systems, devices, and methods related to or that employ chalcogenide memory components and compositions are described. A component of a memory cell, such as a selector device, storage device, or self-selecting memory device, may be made of a chalcogenide material composition. A chalcogenide material may have a composition that includes one or more elements from the boron group, such as boron, aluminum, gallium, indium, or thallium. The chalcogenide material, for instance, may have a composition of selenium, germanium, and at least one of boron, aluminum, gallium, indium, or thallium. The chalcogenide material may in some cases also include arsenic, but may in some cases lack arsenic.
    Type: Application
    Filed: June 18, 2020
    Publication date: October 8, 2020
    Inventors: Enrico Varesi, Paolo Fantini, Lorenzo Fratin, Swapnil A. Lengade
  • Publication number: 20200303464
    Abstract: An example three-dimensional (3-D) memory array includes a substrate material including a plurality of conductive contacts arranged in a staggered pattern and a plurality of planes of a conductive material separated from one another by a first insulation material formed on the substrate material. Each of the plurality of planes of the conductive material includes a plurality of recesses formed therein. A second insulation material is formed in a serpentine shape through the insulation material and the conductive material. A plurality of conductive pillars are arranged to extend substantially perpendicular to the plurality of planes of the conductive material and the substrate and each respective conductive pillar is coupled to a different respective one of the conductive contacts. A chalcogenide material is formed in the plurality of recesses such that the chalcogenide material in each respective recess is formed partially around one of the plurality of conductive pillars.
    Type: Application
    Filed: June 4, 2020
    Publication date: September 24, 2020
    Inventors: Paolo Fantini, Lorenzo Fratin
  • Publication number: 20200243134
    Abstract: Methods, systems, and devices for self-selecting memory with horizontal access lines are described. A memory array may include first and second access lines extending in different directions. For example, a first access line may extend in a first direction, and a second access line may extend in a second direction. At each intersection, a plurality of memory cells may exist, and each plurality of memory cells may be in contact with a self-selecting material. Further, a dielectric material may be positioned between a first plurality of memory cells and a second plurality of memory cells in at least one direction. each cell group (e.g., a first and second plurality of memory cells) may be in contact with one of the first access lines and second access lines, respectively.
    Type: Application
    Filed: February 4, 2020
    Publication date: July 30, 2020
    Inventors: Lorenzo Fratin, Fabio Pellizzer, Agostino Pirovano, Russell L. Meyer
  • Patent number: 10727405
    Abstract: Systems, devices, and methods related to or that employ chalcogenide memory components and compositions are described. A component of a memory cell, such as a selector device, storage device, or self-selecting memory device, may be made of a chalcogenide material composition. A chalcogenide material may have a composition that includes one or more elements from the boron group, such as boron, aluminum, gallium, indium, or thallium. The chalcogenide material, for instance, may have a composition of selenium, germanium, and at least one of boron, aluminum, gallium, indium, or thallium. The chalcogenide material may in some cases also include arsenic, but may in some cases lack arsenic.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: July 28, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Enrico Varesi, Paolo Fantini, Lorenzo Fratin, Swapnil A. Lengade
  • Patent number: 10720579
    Abstract: A self-selecting memory cell may be composed of a memory material that changes threshold voltages based on the polarity of the voltage applied across it. Such a memory cell may be formed at the intersection of a conductive pillar and electrode plane in a memory array. A dielectric material may be formed between the memory material of the memory cell and the corresponding electrode plane. The dielectric material may form a barrier that prevents harmful interactions between the memory material and the material that makes up the electrode plane. In some cases, the dielectric material may also be positioned between the memory material and the conductive pillar to form a second dielectric barrier. The second dielectric barrier may increase the symmetry of the memory array or prevent harmful interactions between the memory material and an electrode cylinder or between the memory material and the conductive pillar.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: July 21, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Lorenzo Fratin, Fabio Pellizzer
  • Patent number: 10700128
    Abstract: An example three-dimensional (3-D) memory array includes a substrate material including a plurality of conductive contacts arranged in a staggered pattern and a plurality of planes of a conductive material separated from one another by a first insulation material formed on the substrate material. Each of the plurality of planes of the conductive material includes a plurality of recesses formed therein. A second insulation material is formed in a serpentine shape through the insulation material and the conductive material. A plurality of conductive pillars are arranged to extend substantially perpendicular to the plurality of planes of the conductive material and the substrate and each respective conductive pillar is coupled to a different respective one of the conductive contacts. A chalcogenide material is formed in the plurality of recesses such that the chalcogenide material in each respective recess is formed partially around one of the plurality of conductive pillars.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: June 30, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Paolo Fantini, Lorenzo Fratin
  • Publication number: 20200203429
    Abstract: An example three-dimensional (3-D) memory array includes a substrate material including a plurality of conductive contacts arranged in a staggered pattern and a plurality of planes of a conductive material separated from one another by a first insulation material formed on the substrate material. Each of the plurality of planes of the conductive material includes a plurality of recesses formed therein. A second insulation material is formed in a serpentine shape through the insulation material and the conductive material. A plurality of conductive pillars are arranged to extend substantially perpendicular to the plurality of planes of the conductive material and the substrate and each respective conductive pillar is coupled to a different respective one of the conductive contacts. A chalcogenide material is formed in the plurality of recesses such that the chalcogenide material in each respective recess is formed partially around one of the plurality of conductive pillars.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 25, 2020
    Inventors: Paolo Fantini, Lorenzo Fratin
  • Patent number: 10622558
    Abstract: A memory cell can include a chalcogenide material having a narrowed end. A conductive material can be positioned at the narrowed end of the chalcogenide material. A dielectric barrier layer can be disposed between the conductive material and the narrowed end of the chalcogenide material. A dielectric spacer material can be positioned along a narrowed segment of the chalcogenide material.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: April 14, 2020
    Assignee: Intel Corporation
    Inventors: Lorenzo Fratin, Russell L. Meyer, Fabio Pellizzer
  • Patent number: 10593399
    Abstract: Methods, systems, and devices for self-selecting memory with horizontal access lines are described. A memory array may include first and second access lines extending in different directions. For example, a first access line may extend in a first direction, and a second access line may extend in a second direction. At each intersection, a plurality of memory cells may exist, and each plurality of memory cells may be in contact with a self-selecting material (SSM). Further, a dielectric material may be positioned between a first plurality of memory cells and a second plurality of memory cells in at least one direction. each cell group (e.g., a first and second plurality of memory cells) may be in contact with one of the first access lines and second access lines, respectively.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: March 17, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Lorenzo Fratin, Fabio Pellizzer, Agostino Pirovano, Russell L. Meyer
  • Publication number: 20200052035
    Abstract: The present disclosure includes three dimensional memory arrays. An embodiment includes a first plurality of conductive lines separated from one another by an insulation material, a second plurality of conductive lines arranged to extend substantially perpendicular to and pass through the first plurality of conductive lines and the insulation material, and a storage element material formed between the first and second plurality of conductive lines where the second plurality of conductive lines pass through the first plurality of conductive lines. The storage element material is between and in direct contact with a first portion of each respective one of the first plurality of conductive lines and a portion of a first one of the second plurality of conductive lines, and a second portion of each respective one of the first plurality of conductive lines and a portion of a second one of the second plurality of conductive lines.
    Type: Application
    Filed: October 18, 2019
    Publication date: February 13, 2020
    Inventors: Fabio Pellizzer, Russell L. Meyer, Agostino Pirovano, Lorenzo Fratin
  • Publication number: 20200035917
    Abstract: A self-selecting memory cell may be composed of a memory material that changes threshold voltages based on the polarity of the voltage applied across it. Such a memory cell may be formed at the intersection of a conductive pillar and electrode plane in a memory array. A dielectric material may be formed between the memory material of the memory cell and the corresponding electrode plane. The dielectric material may form a barrier that prevents harmful interactions between the memory material and the material that makes up the electrode plane. In some cases, the dielectric material may also be positioned between the memory material and the conductive pillar to form a second dielectric barrier. The second dielectric barrier may increase the symmetry of the memory array or prevent harmful interactions between the memory material and an electrode cylinder or between the memory material and the conductive pillar.
    Type: Application
    Filed: August 9, 2019
    Publication date: January 30, 2020
    Inventors: Lorenzo Fratin, Fabio Pellizzer
  • Patent number: 10490602
    Abstract: The present disclosure includes three dimensional memory arrays. An embodiment includes a first plurality of conductive lines separated from one another by an insulation material, a second plurality of conductive lines arranged to extend substantially perpendicular to and pass through the first plurality of conductive lines and the insulation material, and a storage element material formed between the first and second plurality of conductive lines where the second plurality of conductive lines pass through the first plurality of conductive lines. The storage element material is between and in direct contact with a first portion of each respective one of the first plurality of conductive lines and a portion of a first one of the second plurality of conductive lines, and a second portion of each respective one of the first plurality of conductive lines and a portion of a second one of the second plurality of conductive lines.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: November 26, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Fabio Pellizzer, Russell L. Meyer, Agostino Pirovano, Lorenzo Fratin
  • Patent number: 10446226
    Abstract: Disclosed herein is a memory cell including a memory element and a selector device. Data may be stored in both the memory element and selector device. The memory cell may be programmed by applying write pulses having different polarities and magnitudes. Different polarities of the write pulses may program different logic states into the selector device. Different magnitudes of the write pulses may program different logic states into the memory element. The memory cell may be read by read pulses all having the same polarity. The logic state of the memory cell may be detected by observing different threshold voltages when the read pulses are applied. The different threshold voltages may be responsive to the different polarities and magnitudes of the write pulses.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: October 15, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Innocenzo Tortorelli, Russell L. Meyer, Agostino Pirovano, Andrea Redaelli, Lorenzo Fratin, Fabio Pellizzer
  • Publication number: 20190295636
    Abstract: Disclosed herein is a memory cell including a memory element and a selector device. Data may be stored in both the memory element and selector device. The memory cell may be programmed by applying write pulses having different polarities and magnitudes. Different polarities of the write pulses may program different logic states into the selector device. Different magnitudes of the write pulses may program different logic states into the memory element. The memory cell may be read by read pulses all having the same polarity. The logic state of the memory cell may be detected by observing different threshold voltages when the read pulses are applied. The different threshold voltages may be responsive to the different polarities and magnitudes of the write pulses.
    Type: Application
    Filed: June 10, 2019
    Publication date: September 26, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Innocenzo Tortorelli, Russell L. Meyer, Agostino Pirovano, Andrea Redaelli, Lorenzo Fratin, Fabio Pellizzer
  • Patent number: 10424728
    Abstract: A self-selecting memory cell may be composed of a memory material that changes threshold voltages based on the polarity of the voltage applied across it. Such a memory cell may be formed at the intersection of a conductive pillar and electrode plane in a memory array. A dielectric material may be formed between the memory material of the memory cell and the corresponding electrode plane. The dielectric material may form a barrier that prevents harmful interactions between the memory material and the material that makes up the electrode plane. In some cases, the dielectric material may also be positioned between the memory material and the conductive pillar to form a second dielectric barrier. The second dielectric barrier may increase the symmetry of the memory array or prevent harmful interactions between the memory material and an electrode cylinder or between the memory material and the conductive pillar.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: September 24, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Lorenzo Fratin, Fabio Pellizzer
  • Publication number: 20190287614
    Abstract: Methods, systems, and devices for self-selecting memory with horizontal access lines are described. A memory array may include first and second access lines extending in different directions. For example, a first access line may extend in a first direction, and a second access line may extend in a second direction. At each intersection, a plurality of memory cells may exist, and each plurality of memory cells may be in contact with a self-selecting material (SSM). Further, a dielectric material may be positioned between a first plurality of memory cells and a second plurality of memory cells in at least one direction each cell group (e.g., a first and second plurality of memory cells) may be in contact with one of the first access lines and second access lines, respectively.
    Type: Application
    Filed: March 19, 2018
    Publication date: September 19, 2019
    Inventors: Lorenzo Fratin, Fabio Pellizzer, Agostino Pirovano, Russell L. Meyer
  • Publication number: 20190115532
    Abstract: Systems, devices, and methods related to or that employ chalcogenide memory components and compositions are described. A component of a memory cell, such as a selector device, storage device, or self-selecting memory device, may be made of a chalcogenide material composition. A chalcogenide material may have a composition that includes one or more elements from the boron group, such as boron, aluminum, gallium, indium, or thallium. The chalcogenide material, for instance, may have a composition of selenium, germanium, and at least one of boron, aluminum, gallium, indium, or thallium. The chalcogenide material may in some cases also include arsenic, but may in some cases lack arsenic.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 18, 2019
    Inventors: Enrico Varesi, Paolo Fantini, Lorenzo Fratin, Swapnil A. Lengade
  • Publication number: 20190088714
    Abstract: The present disclosure includes three dimensional memory arrays. An embodiment includes a first plurality of conductive lines separated from one another by an insulation material, a second plurality of conductive lines arranged to extend substantially perpendicular to and pass through the first plurality of conductive lines and the insulation material, and a storage element material formed between the first and second plurality of conductive lines where the second plurality of conductive lines pass through the first plurality of conductive lines. The storage element material is between and in direct contact with a first portion of each respective one of the first plurality of conductive lines and a portion of a first one of the second plurality of conductive lines, and a second portion of each respective one of the first plurality of conductive lines and a portion of a second one of the second plurality of conductive lines.
    Type: Application
    Filed: September 21, 2017
    Publication date: March 21, 2019
    Inventors: Fabio Pellizzer, Russell L. Meyer, Agostino Pirovano, Lorenzo Fratin
  • Publication number: 20190067571
    Abstract: A self-selecting memory cell may be composed of a memory material that changes threshold voltages based on the polarity of the voltage applied across it. Such a memory cell may be formed at the intersection of a conductive pillar and electrode plane in a memory array. A dielectric material may be formed between the memory material of the memory cell and the corresponding electrode plane. The dielectric material may form a barrier that prevents harmful interactions between the memory material and the material that makes up the electrode plane. In some cases, the dielectric material may also be positioned between the memory material and the conductive pillar to form a second dielectric barrier. The second dielectric barrier may increase the symmetry of the memory array or prevent harmful interactions between the memory material and an electrode cylinder or between the memory material and the conductive pillar.
    Type: Application
    Filed: August 25, 2017
    Publication date: February 28, 2019
    Inventors: Lorenzo Fratin, Fabio Pellizzer
  • Publication number: 20190044063
    Abstract: A memory cell can include a chalcogenide material having a narrowed end. A conductive material can be positioned at the narrowed end of the chalcogenide material. A dielectric barrier layer can be disposed between the conductive material and the narrowed end of the chalcogenide material. A dielectric spacer material can be positioned along a narrowed segment of the chalcogenide material.
    Type: Application
    Filed: March 30, 2018
    Publication date: February 7, 2019
    Applicant: Intel Corporation
    Inventors: Lorenzo Fratin, Russell L. Meyer, Fabio Pellizzer